Голографическая интерферометрия - Holographic interferometry
Голографическая интерферометрия (ЗДРАВСТВУЙ)[1][2] - это метод, позволяющий измерять статические и динамические смещения объектов с оптически шероховатой поверхностью с оптической интерферометрической точностью (то есть до долей длины волны света). Эти измерения могут применяться для анализа напряжений, деформаций и вибрации, а также для неразрушающего контроля и дозиметрии.[3] Его также можно использовать для обнаружения изменений длины оптического пути в прозрачных средах, что позволяет, например, визуализировать и анализировать поток жидкости. Его также можно использовать для создания контуров, представляющих форму поверхности.
Голография представляет собой двухэтапный процесс записи дифрагированного светового поля, рассеянного от объекта, и выполнения визуализации изображения. Этот процесс может быть достигнут с использованием традиционных фотопластинок или цифровой матрицы датчиков, в цифровая голография. Если записанное поле накладывается на «живое поле», рассеянное от объекта, два поля будут идентичными. Однако если к объекту приложить небольшую деформацию, относительные фазы двух световых полей изменятся, и можно будет наблюдать интерференцию. Этот метод известен как голографическая интерферометрия в реальном времени.
Также возможно получить полосы, сделав две записи светового поля, рассеянного от объекта, на одном и том же носителе записи. Восстановленные световые поля могут затем интерферировать, создавая полосы, отображающие смещение поверхности. Это известно как голография «замороженной бахромы».
Форма бахромы связана с изменением положения поверхности или уплотнением воздуха.
В последние годы было разработано множество методов автоматического анализа таких закономерностей.
Открытие
Несколько исследовательских групп опубликовали в 1965 году статьи, описывающие голографическую интерферометрию.[1][4][5][6] Первые наблюдения явлений, которые можно отнести к голографической интерферометрии, были сделаны Юрисом Упатниексом в 1963 году.[7] существенная особенность процесса не была понятна до работ Пауэлла и Стетсона.[1] Их эксперименты проводились в период с октября по декабрь 1964 г., и они начали с исследования длины периодической когерентности используемого гелий-неонового лазера. Компактный лазерный луч использовался для освещения пятна на небольшом объекте, который помещался между двумя зеркалами, так что его изображение можно было наблюдать, глядя через одно зеркало в туннель множественных отражений между зеркалами. Длина пути каждого изображения была на 10 см больше, чем у предыдущего. Поскольку у этих лазеров было около трех продольных мод, длина их когерентности была периодической, как описано производителем Spectra Physics в сотрудничестве с Perkin Elmer Corporation. Это было продемонстрировано путем записи голограммы вида через одно из зеркал.
Однако на одной из голограмм темная полоса наблюдалась на изображении, наиболее близком к голограмме, и наблюдалось смещение положения в перспективе. Эта полоса не наблюдалась в исходном лазерном луче и должна была быть чем-то созданным с помощью голографического процесса. Конфокальный лазерный резонатор состоял из сферического зеркала на выходе и плоского зеркала в центре кривизны на другом конце. Регулировка продольного расстояния контролировала количество внеосевых мод колебаний, и было замечено, что лазер колебался в более чем одной осевой моде. Множественные лазерные моды были некогерентными и не мешали наблюдаемому лазерному лучу, так почему же они мешали реконструкции голограммы? Стетсона выдвинул идею, что каждый режим существовал как в объекте и в эталонном пучке, и каждую пару записанной отдельную голограммы в фотопластинках. Когда они были реконструированы, обе записи были восстановлены одновременно из одного и того же лазерного луча, и поля были взаимно когерентными. Пауэлл возражал против этой идеи, потому что она предполагала, что голограмма обладает способностью когерентно восстанавливать поля, которые были некогерентными во время ее записи.
Полученные аргументы привели к серии экспериментов, которые позже были опубликованы в 1966 году.[8] Они состояли из: (1) Записи отражения концентрированного лазерного луча во время захвата всего опорного луча на голограмме и регулировку лазера для комбинаций режимов вне оси. (2) Запись двойной экспозиции голограммы объекта, когда объект, зеркало опорного луча, а сама голограмма были слегка повернуты между экспозициями. (3) Запись голограмм дна 35-мм банки для пленки во время ее вибрации. Позже, в апреле 1965 года, Стетсон и Пауэлл получили в реальном времени интерференционные картины между реальным объектом и его голографической реконструкцией.[9]
Приложения
Лазерная виброметрия
С момента своего появления виброметрия с помощью голографической интерферометрии стала обычным явлением. Пауэлл и Стетсон показали, что полосы на усредненной по времени голограмме вибрирующего объекта соответствуют нулям Функция Бесселя , куда - глубина модуляции фазовой модуляции оптического поля при на объекте.[1] С помощью этого метода локальную амплитуду вибрации можно оценить путем подсчета полос. В работе, о которой сообщил Алексофф,[10] опорный луч был сдвинут по частоте для выбора одной боковой полосы порядка . В этом случае полосы для боковой полосы соответствуют нулям функции Бесселя . Последовательная визуализация боковых полос частот решила проблему подсчета полос.[11] Порядок боковых полос является маркером локальной амплитуды синусоидального движения вне плоскости. Мультиплексные измерения оптических боковых полос[12][13] позволяют количественно измерять амплитуды колебаний вне плоскости, которые намного меньше длины оптической волны.
Лазерная доплеровская визуализация
Во внеосевой конфигурации, с медленной камерой и лазерным диодом, голографическая интерферометрия достаточно чувствительна, чтобы обеспечить широкое поле, лазерная доплеровская визуализация оптических флуктуаций амплитуды и фазы с помощью медленной или быстрой камеры. Камера с низкой скоростью (например, видеосъемка) будет записывать усредненные по времени голографические интерферограммы, что приведет к фильтрации нижних частот оптического сигнала флуктуаций. Путем сдвига частоты опорного пучка, фильтр нижних частот становится полосовой фильтр с центром в расстройки частоты, и селективное обнаружение узкополосного и формирование изображений может выполняться. Этот метод позволяет визуализировать микрососудистый кровоток,[14] и широкопольное измерение фотоплетизмограммы путем обнаружения движения ткани вне плоскости.[15] Широкая временная полоса пропускания камеры с высокой пропускной способностью может обеспечить широкополосное обнаружение и анализ оптических флуктуаций. Его можно использовать для визуализации пульсирующего кровотока.[16][17]
Смотрите также
Рекомендации
- ^ а б c d Пауэлл Р.Л., Стетсон К.А., 1965, J. Opt. Soc. Am., 55, 1593-8
- ^ Джонс Р. и Уайкс К., Голографическая и спекл-интерферометрия, 1989, Cambridge University Press
- ^ Бейгзаде, А. (2017). «Моделирование калориметра для дозиметрии излучения на основе голографической интерферометрии». Ядерные инструменты и методы в физических исследованиях A. 864: 40–49. Bibcode:2017NIMPA.864 ... 40B. Дои:10.1016 / j.nima.2017.05.019.
- ^ Brooks RE, Heflinger LO и Wuerker RF, 1965 Интерферометрия с голографически реконструированным лучом сравнения, Applied Physics Letters, 7, 248-9
- ^ Collier RJ, Doherty ET и Pennington KS, 1965, Применение методов муара к голографии, Applied Physics Letters, 7, 223-5
- ^ Haines KA & Hildebrand BP, 1965, Построение контуров путем реконструкции волнового фронта, Physics Letters, 19, 10-11
- ^ Haines, K, 2006, J. Holography Speckle, 3, 35
- ^ Стетсон К.А., Пауэлл Р.Л., 1966, J. Opt. Soc. Am., 56, 1161-6
- ^ Пауэлл Р.Л., Стетсон К.А., 1965, J. Opt. Soc. Am., 55, 1694-5
- ^ К. С. Алексофф (1971). «Голография с временной модуляцией». Прикладная оптика. 10 (6): 1329–1341. Bibcode:1971ApOpt..10.1329A. Дои:10.1364 / AO.10.001329. PMID 20111115.
- ^ F Joud; F Verpillat; Ф Лалоэ; M Atlan; J Hare; М Гросс (2009). «Безрамочные голографические измерения колебаний большой амплитуды». Письма об оптике. 34 (23): 3698–3700. arXiv:1003.5999. Bibcode:2010arXiv1003.5999J. Дои:10.1364 / ol.34.003698. PMID 19953166.
- ^ Н. Верриер; М. Атлан (2013). «Абсолютное измерение колебаний малой амплитуды методом усредненной по времени гетеродинной голографии с двойным гетеродином». Письма об оптике. 38 (5): 739–41. arXiv:1211.5328. Bibcode:2013OptL ... 38..739В. Дои:10.1364 / OL.38.000739. PMID 23455283.
- ^ Bruno, F .; Laudereau, J. B .; Lesaffre, M .; Верье; Атлан, М. (2014). «Фазочувствительная узкополосная гетеродинная голография». Прикладная оптика. 53 (7): 1252–1257. arXiv:1301.7532. Bibcode:2014ApOpt..53.1252B. Дои:10.1364 / AO.53.001252. PMID 24663351.
- ^ Атлан, М .; Гросс, М .; Забудьте, B .; Виталис, Т .; Rancillac, A .; Данн, А. (август 2006 г.). «Широкопольная лазерная допплеровская визуализация в частотной области in vivo». Опт. Латыш. 31 (18): 2762–2764. Bibcode:2006OptL ... 31.2762A. Дои:10.1364 / ol.31.002762. PMID 16936884.
- ^ Джеффри Бенкте; Пьер Паньу; Томас Костас; Сам Баят; Майкл Атлан (2015). «Голографическая лазерная допплеровская визуализация пульсирующего кровотока». arXiv:1501.05776 [физика. оптика ].
- ^ Лео Пуйо; Изабель Ферезу; Армель Рансильяк; Мануэль Симонутти; Мишель Пакес; Хосе-Ален Сахель; Матиас Финк; Майкл Атлан (2015). «Пульсирующая визуализация микрососудистого кровотока с помощью анализа с помощью кратковременного преобразования Фурье сверхбыстрой лазерной голографической интерферометрии». arXiv:1510.01892 [Physics.med-ph ].
- ^ Матильда Пеллиццари; Мануэль Симонутти; Жюли Дегарден; Хосе-Ален Сахель; Матиас Финк; Мишель Пакес; Майкл Атлан (2016). «Высокоскоростная оптическая голография кровотока сетчатки». Письма об оптике. 41 (15): 3503–6. arXiv:1607.07800. Дои:10.1364 / OL.41.003503. PMID 27472604.
внешняя ссылка
- Голографическая интерферометрия (Эдинбургский университет)[1]
- Голографическая интерферометрия (Уорикский университет)[2]
- Голографическая интерферометрия (Университет Райса) [3]
- интерферометрия
- Головибес ПО для рендеринга голограмм в реальном времени