Теорема Линдстремса - Википедия - Lindströms theorem
В математическая логика, Теорема Линдстрема (назван в честь шведского логика Пер Линдстрём, опубликовавший его в 1969 г.), утверждает, что логика первого порядка это сильнейшая логика[1] (удовлетворяющие определенным условиям, например закрытие под классическое отрицание ) имея как (счетная) компактность и (вниз) Собственность Левенхайма – Сколема.[2]
Теорема Линдстрема, пожалуй, самый известный результат того, что позже стало известно как теория абстрактных моделей,[3] основным понятием которого является абстрактная логика;[4] более общее понятие учреждение был введен позже, что продвигает от теоретико-множественного понятия модели к категория -теоретический.[5] Линдстрем ранее получил аналогичный результат при изучении логик первого порядка, расширенных с помощью Квантификаторы Линдстрема.[6]
Теорема Линдстрема была распространена на различные другие системы логики, в частности, модальную логику с помощью Йохан ван Бентем и Себастьян Энквист.
Примечания
- ^ В смысле Хайнц-Дитер Эббингаус Расширенная логика: общие рамки в К. Дж. Барвайз и С. Феферман, редакторы, Теоретико-модельная логика, 1985 ISBN 0-387-90936-2 стр.43
- ^ Товарищ философской логики Дейл Жакетт 2005 ISBN 1-4051-4575-7 стр. 329
- ^ Чен Чунг Чанг; Х. Джером Кейслер (1990). Теория моделей. Эльзевир. п. 127. ISBN 978-0-444-88054-3.
- ^ Жан-Ив Безио (2005). Logica universalis: к общей теории логики. Birkhäuser. п. 20. ISBN 978-3-7643-7259-0.
- ^ Дов М. Габбай, изд. (1994). Что такое логическая система?. Кларендон Пресс. п. 380. ISBN 978-0-19-853859-2.
- ^ Йоуко Вяэнянен, Теорема Линдстрема
Рекомендации
- Пер Линдстрем, «О расширениях элементарной логики», Теория 35, 1969, 1–11. Дои:10.1111 / j.1755-2567.1969.tb00356.x
- Йохан ван Бентем, "Новая модальная теорема Линдстрема", Logica Universalis 1, 2007, 125–128. Дои:10.1007 / s11787-006-0006-3
- Эббингаус, Хайнц-Дитер; Флум, Йорг; Томас, Вольфганг (1994), Математическая логика (2-е изд.), Берлин, Нью-Йорк: Springer-Verlag, ISBN 978-0-387-94258-2
- Себастьян Энквист, "Общая теорема Линдстрема для некоторых нормальных модальных логик", Logica Universalis 7, 2013, 233–264. Дои:10.1007 / s11787-013-0078-9
- Монк, Дж. Дональд (1976), Математическая логика, Тексты для выпускников по математике, Берлин, Нью-Йорк: Springer-Verlag, ISBN 978-0-387-90170-1
- Шон Хедман, Первый курс логики: введение в теорию моделей, теорию доказательств, вычислимость и сложность, Oxford University Press, 2004 г., ISBN 0-19-852981-3, раздел 9.4
Этот математическая логика -связанная статья является заглушка. Вы можете помочь Википедии расширяя это. |