Аукцион цепочки поставок - Supply-chain auction

А аукцион цепочки поставок является аукцион для координации торговли между различными поставщиками и потребителями в цепочка поставок.[1][2][3] Это обобщение двойной аукцион. В двойном аукционе в каждой сделке участвуют два агента - покупатель и продавец, поэтому «цепочка поставок» содержит только одно звено. На общем аукционе цепочки поставок в каждой сделке может участвовать много разных агентов, например: продавец, посредник, перевозчик и покупатель.

Аукцион по линейной цепочке поставок

Бабайофф и Нисан[1] представить аукцион для случая, когда цепочка поставок является линейной - каждый узел в цепочке потребляет выходные данные предыдущего узла и производит входные данные для следующего узла. Есть один класс первоначальные поставщики, несколько классов конвертеры, и один класс конечные потребители.

Их действующий пример - рынок лимонада, на котором есть три типа агентов: сборщики, соковыжималки и пьющие:

  • Каждый сборщик собирает один лимон с ближайшего дерева за фиксированную плату;
  • Каждый соковыжималка берет один лимон и выжимает его в стакан лимонада по фиксированной цене;
  • Каждый пьющий хочет выпить один стакан лимонада и имеет фиксированное положительное значение для этого стакана.

На этом рынке в каждой сделке участвуют три агента - по одному каждого вида. Стоимость / ценность различных агентов одного и того же типа могут отличаться, поэтому желательно организовать торговлю, используя правдивый механизм. Бабайофф и Нисан предлагают провести три разных двойные аукционы - по одному на каждый вид агентов:

  • А лимонный аукцион - где продавцы являются сборщиками, а есть «виртуальные покупатели», стоимость которых равна стоимости поилки за вычетом стоимости соковыжималки;
  • А выжимной аукцион - где продавцы являются соковыжималками, а есть «виртуальные покупатели», стоимость которых равна стоимости поилки за вычетом стоимости сборщика;
  • А соковый аукцион - где покупатели - это пьющие, а есть «виртуальные продавцы», стоимость которых равна стоимости сборщика плюс стоимость соковыжималки;

Для каждого двойного аукциона есть несколько вариантов, например: VCG аукцион (что правдиво и эффективно, но имеет недостаток), или аукцион по сокращению торговли (что правдиво и не имеет дефицита, но эффективно только приблизительно).

Они предлагают два протокола для объединения различных двойных аукционов в один результат:

  • Симметричный протокол - на каждом рынке проводится отдельный двойной аукцион - центрального рынка нет. Чтобы обеспечить материальный баланс, правило двойного аукциона, используемое на рынках, должно быть последовательный, т.е. проводить одинаковое количество сделок. Поскольку количество оптимальных сделок одинаково на всех рынках, аукцион VCG (который всегда совершает все оптимальные сделки) является согласованным. Точно так же правило сокращения торговли (которое делает все оптимальные сделки за вычетом единицы) согласовано. Но правило McAfee (которое делает либо все оптимальные сделки, либо все, кроме одной, в зависимости от значений) несовместимо.
  • Pivot Протокол - один из рынков (например, рынок конечного потребителя) проводит двойной аукцион и отправляет результаты на другие рынки до / после в цепочке, и они используют эту информацию для проведения своих собственных двойных аукционов. Чтобы гарантировать отсутствие дефицита, правило двойного аукциона, используемое на рынках, не должно иметь дефицита, и, более того, оно должно удовлетворять более строгому условию - цена, уплачиваемая покупателем, должна быть не меньше минимальной стоимости неторговый продавец. Это условие выполняется для правила сокращения торговли, но не обязательно для правила McAfee.

Пример

Предположим, есть три сборщика со значениями -3, -6, -7 (отрицательные значения обозначают затраты); три соковыжималки со значениями -1, -3, -6; и три потребителя со значениями +12, +11, +7. В следующей таблице представлены три двойных аукциона (значения, выделенные жирным шрифтом, обозначают реальных трейдеров; значения, не выделенные жирным шрифтом, представляют собой виртуальных трейдеров, рассчитанных как сумма / разность значений других трейдеров.

Лимонный рынокСжимающий рынокРынок соковКомбинированный
Ценности покупателей:+11,+8,+1+9,+5,+0+12,+11,+7
Ценности продавцов:-3,-6,-7-1,-3,-6-4,-9,-13
Симметричный протокол,

Аукцион VCG (правдивый и эффективный)

Два продавца (сборщики) продают по -7

= макс (-8, -7).

Два продавца (соковыжималки) продают по -5

= макс (-5, -6).

Два покупателя (пьющих) покупают за +9

= макс (+ 9, + 7).

Два сборщика выбирают -7;

Две выжимки отжимают по -5;

Двое пьющих пьют за +9;

Социальное обеспечение 12 + 11-1-3-3-6 = +10;

Дефицит -3 на единицу = -6.

Симметричный протокол,

Аукцион по сокращению торговли (правдивый и без дефицита)

Один продавец (сборщик) продает за -6;Один продавец (соковыжималка) продает за -3;Один покупатель (пьющий) покупает за +11;


Один сборщик выбирает -6;

Одна соковыжималка выжимает -3;

Один пьющий выпивает за +11;

Социальное обеспечение 12-1-3 = +8;

Излишек +2 на единицу = +2.

Симметричный протокол,

Результат рыночного равновесия

(эффективный и бюджетный)

Два продавца (сборщики) продают по -6;
Два продавца (соковыжималки) продают по -3;
Два покупателя (пьющих) покупают за +9;
Два сборщика выбирают -6;

Две выжимки на -3;

Двое пьющих пьют за +9;

Социальное обеспечение 12 + 11-1-3-3-6 = +10;

Бюджет сбалансирован.

Pivot протокол

(начиная с рынка соков),

Аукцион VCG (правдивый и эффективный)

Размер сделки равен 2, поэтому

продают два продавца (сборщика);

их цена max (-8, -7) = - 7.

Размер сделки равен 2, поэтому

продают два продавца (соковыжималки);

их цена max (-11--6, -6) = - 5.

Отправить на предыдущий рынок

размер сделки (2) и цена продавца (-11-3 = -8)

Два покупателя (пьющих) покупают за +9;

Два продавца (виртуальные) продают за -11

= макс (-11, -13);

Отправить на предыдущий рынок

размер сделки (2) и цена продавца (-11).

Два сборщика выбирают -7;

Две выжимки отжимают по -5;

Двое пьющих пьют за +9;

Социальное обеспечение 12 + 11-1-3-3-6 = +10;

Дефицит -3 на единицу = -6.


Аукцион для ориентированного ациклического графа

Бабайофф и Уолш[2] распространить вышеупомянутую работу на случай, когда цепочка поставок может быть любым ациклическим графом. В качестве примера они рассматривают следующий рынок с шестью видами агентов:

  • Сборщики лимонов - каждый собирает 1 кг лимонов за фиксированную плату;
  • Производители сахара - каждый производит 0,5 кг сахара по фиксированной цене;
  • Соковыжималки - каждый конвертирует 1 кг лимонов в 0,5 галлона сока по фиксированной цене;
  • Производители лимонада - каждый конвертирует 1 кг сахара плюс 0,5 галлона сока в 1 галлон лимонада по фиксированной цене;
  • Покупатели сока - каждый хочет 0,5 галлона сока и имеет фиксированную стоимость;
  • Покупатели лимонада - каждый хочет 1 галлон лимонада и имеет фиксированную стоимость.

Закупочный аукцион

Чен, Раунди, Чжан и Джанакираман[3] изучите другую среду, в которой есть один покупатель и один вид товара, но есть разные производители в разных местах поставки. Покупателю необходимо разное количество товара в разных точках сбыта. Покупатель проводит обратный аукцион. Покупатель должен оплатить, помимо стоимости производства, также стоимость транспортировки от мест поставки до мест спроса. Они представляют три различных механизма: первый является правдивым и эффективным с точки зрения предложения, но не учитывает транспортные расходы; второй правдив и эффективен с точки зрения поставок и транспортировки, но может быть хуже для покупателя; третье справедливо только для производителей, но не для покупателя.

Рекомендации

  1. ^ а б Бабайофф, М .; Нисан, Н. (2004-05-01). «Параллельные аукционы в цепочке поставок». Журнал исследований искусственного интеллекта. 21: 595–629. Дои:10.1613 / jair.1316. ISSN  1076-9757.
  2. ^ а б Бабайофф, Моше; Уолш, Уильям Э. (2005-03-01). «Совместимые со стимулами, сбалансированные по бюджету, но высокоэффективные аукционы для формирования цепочки поставок». Системы поддержки принятия решений. 39 (1): 123–149. Дои:10.1016 / j.dss.2004.08.008.
  3. ^ а б Чен, Рэйчел Р .; Раунди, Робин О .; Чжан, Рэйчел К .; Джанакираман, Ганеш (01.03.2005). «Эффективные аукционные механизмы закупок в цепочке поставок». Наука управления. 51 (3): 467–482. Дои:10.1287 / mnsc.1040.0329. ISSN  0025-1909.