Аффинные полиномы q-Кравчука - Affine q-Krawtchouk polynomials

В математике аффинный q-Полиномы Кравчука представляют собой семейство основных гипергеометрических ортогональные многочлены в основном Схема Askey, представленный Карлитцем и Ходжесом. Рулоф Коэкоек, Питер А. Лески и Рене Ф. Свартту (2010, 14) дают подробный перечень их свойств.

Определение

Многочлены даны в терминах основные гипергеометрические функции и Символ Поххаммера к [1]

Ортогональность

Повторяемость и разностные отношения

Формула Родригеса

Производящая функция

Связь с другими многочленами

Аффинные полиномы q-Кравчука → Маленькие многочлены q-Лагерра

Рекомендации

  1. ^ Рулоф Коэкоек, Гипергеометрические ортогональные многочлены и их q-аналоги, с. 501, Springer, 2010.
  • Гаспер, Джордж; Рахман, Мизан (2004), Базовый гипергеометрический ряд, Энциклопедия математики и ее приложений, 96 (2-е изд.), Издательство Кембриджского университета, Дои:10.2277/0521833574, ISBN  978-0-521-83357-8, МИСТЕР  2128719
  • Коэкоек, Рулоф; Лески, Питер А .; Сварттоу, Рене Ф. (2010), Гипергеометрические ортогональные многочлены и их q-аналоги, Springer Monographs in Mathematics, Берлин, Нью-Йорк: Springer-Verlag, Дои:10.1007/978-3-642-05014-5, ISBN  978-3-642-05013-8, МИСТЕР  2656096
  • Koornwinder, Tom H .; Wong, Roderick S.C .; Коэкоек, Рулоф; Сварттоу, Рене Ф. (2010), «Аффинные полиномы q-Кравчука», в Олвер, Фрэнк В. Дж.; Lozier, Daniel M .; Бойсверт, Рональд Ф .; Кларк, Чарльз В. (ред.), Справочник NIST по математическим функциям, Издательство Кембриджского университета, ISBN  978-0-521-19225-5, МИСТЕР  2723248
  • Стэнтон, Деннис (1981), "Три теоремы сложения для некоторых полиномов q-Кравчука", Geometriae Dedicata, 10 (1): 403–425, Дои:10.1007 / BF01447435, ISSN  0046-5755, МИСТЕР  0608153