В физика, то искаженная метрика Шварцшильда - метрика стандартного / изолированного Пространство-время Шварцшильда подвергается воздействию внешних полей. При численном моделировании метрика Шварцшильда может быть искажена почти произвольными видами внешних распределение энергии-импульса. Однако в точном анализе зрелый метод искажения стандартной метрики Шварцшильда ограничен рамками Метрики Вейля.
Стандартный Шварцшильд как вакуумная метрика Вейля
Все статические осесимметричные решения Уравнения Эйнштейна – Максвелла можно записать в виде метрики Вейля,[1]
![(1) quad ds ^ {2} = - e ^ {{2 psi ( rho, z)}} dt ^ {2} + e ^ {{2 gamma ( rho, z) -2 psi ( rho, z)}} (d rho ^ {2} + dz ^ {2}) + e ^ {{- 2 psi ( rho, z)}} rho ^ {2} d phi ^ {2} ,,](https://wikimedia.org/api/rest_v1/media/math/render/svg/a85fbb9b94e9902b0333c814c39ac2dffb27db4b)
С точки зрения Вейля, метрические потенциалы, порождающие стандартные Решение Шварцшильда даны[1][2]
![(2) quad psi _ {{SS}} = { frac {1} {2}} ln { frac {LM} {L + M}} ,, quad gamma _ {{SS} } = { frac {1} {2}} ln { frac {L ^ {2} -M ^ {2}} {l _ {+} l _ {-}}} ,,](https://wikimedia.org/api/rest_v1/media/math/render/svg/12d6a2ae60fe005544aa3a93aa2599836f7d38f1)
куда
![(3) quad L = { frac {1} {2}} { big (} l _ {+} + l _ {-} { big)} ,, quad l _ {+} = { sqrt { rho ^ {2} + (z + M) ^ {2}}} ,, quad l _ {-} = { sqrt { rho ^ {2} + (zM) ^ {2}}} , ,](https://wikimedia.org/api/rest_v1/media/math/render/svg/fefaf42c8ba7bf4a743e2efdda1116390ec77ca8)
что дает метрику Шварцшильда в Канонические координаты Вейля который
![(4) quad ds ^ {2} = - { frac {LM} {L + M}} dt ^ {2} + { frac {(L + M) ^ {2}} {l _ {+} l_ {-}}} (d rho ^ {2} + dz ^ {2}) + { frac {L + M} {LM}} , rho ^ {2} d phi ^ {2} , .](https://wikimedia.org/api/rest_v1/media/math/render/svg/91c0100ec6446f927029f71a0716b81e53968c77)
Вейлевское искажение метрики Шварцшильда
Вакуумные пространства-времени Вейля (например, Шварцшильда) подчиняются следующим уравнениям поля:[1][2]
![(5.a) quad nabla ^ {2} psi = 0 ,,](https://wikimedia.org/api/rest_v1/media/math/render/svg/b98d664cba0253831c1ce9259ea19a1623c6fe16)
![(5.b) quad gamma _ {{, , rho}} = rho , { Big (} psi _ {{, , rho}} ^ {2} - psi _ { {, , z}} ^ {2} { Big)} ,,](https://wikimedia.org/api/rest_v1/media/math/render/svg/411307c1b666d1f0094d84f66cf831b0e73acb98)
![(5.c) quad gamma _ {{, , z}} = 2 , rho , psi _ {{, , rho}} psi _ {{, , z}} ,,](https://wikimedia.org/api/rest_v1/media/math/render/svg/3405289b8ee2c858658abefa314021ca5dc75e98)
![(5.d) quad gamma _ {{, , rho rho}} + gamma _ {{, , zz}} = - { big (} psi _ {, , rho }} ^ {2} + psi _ {{, , z}} ^ {2} { big)} ,,](https://wikimedia.org/api/rest_v1/media/math/render/svg/64c47cd59dfee2296753eda19fd6af8f0235c82c)
куда
это Оператор Лапласа.
Вывод уравнений вакуумного поля.
Уравнение Эйнштейна вакуума гласит
, что дает уравнения (5.a) - (5.c).
Кроме того, дополнительное соотношение
следует уравнение (5.d).
Уравнение (5.a) - это линейный Уравнение Лапласа; то есть линейные комбинации данных решений все еще являются его решениями. Учитывая два решения
уравнения (5.a), можно построить новое решение через
![(6) quad { tilde psi} , = , psi ^ {{ langle 1 rangle}} + psi ^ {{ langle 2 rangle}} ,,](https://wikimedia.org/api/rest_v1/media/math/render/svg/cf1dd78b416607d4e4741227b703f9b5db52aee2)
а другой метрический потенциал можно получить с помощью
![(7) quad { tilde gamma} , = , gamma ^ {{ langle 1 rangle}} + gamma ^ {{ langle 2 rangle}} + 2 int rho , { Big {} , { Big (} psi _ {{, , rho}} ^ {{ langle 1 rangle}} psi _ {{, , rho}} ^ {{ langle 2 rangle}} - psi _ {{, , z}} ^ {{ langle 1 rangle}} psi _ {{, , z}} ^ {{ langle 2 rangle}} { Big)} , d rho + { Big (} psi _ {, , rho}} ^ {{ langle 1 rangle}} psi _ {{, , z}} ^ { { langle 2 rangle}} + psi _ {{, , z}} ^ {{ langle 1 rangle}} psi _ {{, , rho}} ^ {{ langle 2 rangle }} { Big)} , dz , { Big }} ,.](https://wikimedia.org/api/rest_v1/media/math/render/svg/fa75630f4e1d3e1dddffba24e9fa55534a308cfe)
Позволять
и
, пока
и
относятся ко второму набору метрических потенциалов Вейля. Потом,
построенный по формулам (6) (7), приводит к наложенной метрике Шварцшильда-Вейля
![(8) quad ds ^ {2} = - e ^ {{2 psi ( rho, z)}} { frac {LM} {L + M}} dt ^ {2} + e ^ {{2 gamma ( rho, z) -2 psi ( rho, z)}} { frac {(L + M) ^ {2}} {l _ {+} l _ {-}}} (d rho ^ {2} + dz ^ {2}) + e ^ {{- 2 psi ( rho, z)}} { frac {L + M} {LM}} , rho ^ {2} d phi ^ {2} ,.](https://wikimedia.org/api/rest_v1/media/math/render/svg/458bed6ff8347c62c0b3f54026a7f1091ba7a7af)
С преобразованиями[2]
![(9) quad L + M = r ,, quad l _ {+} + l _ {-} = 2M cos theta ,, quad z = (r-M) cos theta ,,](https://wikimedia.org/api/rest_v1/media/math/render/svg/ba59ea73ac16490aff6ba3707b04a8986f9405a5)
![; ; quad rho = { sqrt {r ^ {2} -2Mr}} , sin theta ,, quad l _ {+} l _ {-} = (rM) ^ {2} - M ^ {2} cos ^ {2} theta ,,](https://wikimedia.org/api/rest_v1/media/math/render/svg/260eb8fb64dc670c378f2fab2252fa0cf47bbc8b)
можно получить наложенную метрику Шварцшильда в обычном
координаты,
![(10) quad ds ^ {2} = - e ^ {{2 psi (r, theta)}} , { Big (} 1 - { frac {2M} {r}} { Big) } , dt ^ {2} + e ^ {{2 gamma (r, theta) -2 psi (r, theta)}} { Big {} , { Big (} 1- { frac {2M} {r}} { Big)} ^ {{- 1}} dr ^ {2} + r ^ {2} d theta ^ {2} , { Big }} + e ^ {{-2 psi (r, theta)}} r ^ {2} sin ^ {2} theta , d phi ^ {2} ,.](https://wikimedia.org/api/rest_v1/media/math/render/svg/ce0ca7aebaf8a26295c119a2781f85112863ab75)
Наложенную метрику (10) можно рассматривать как стандартную метрику Шварцшильда, искаженную внешними источниками Вейля. При отсутствии потенциала искажения
, Уравнение (10) сводится к стандартной метрике Шварцшильда
![{ displaystyle (11) quad ds ^ {2} = - { Big (} 1 - { frac {2M} {r}} { Big)} , dt ^ {2} + { Big (} 1 - { frac {2M} {r}} { Big)} ^ {- 1} , dr ^ {2} + r ^ {2} , d theta ^ {2} + r ^ {2} sin ^ {2} theta , d phi ^ {2} ,.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6748d41aff65a0382db0f2a3999bcec918b9ab7d)
Искаженное по Вейлю решение Шварцшильда в сферических координатах
Подобно точные вакуумные решения к метрике Вейля в сферические координаты, у нас также есть серийные решения уравнению (10). Потенциал искажения
в уравнении (10) задается мультипольное расширение[3]
с ![R: = { Big [} { Big (} 1 - { frac {2M} {r}} { Big)} r ^ {2} + M ^ {2} cos ^ {2} theta { Big]} ^ {{1/2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/83995718d6efbb4af626a13edda00c757738fa14)
куда
![(13) quad P_ {i}: = p_ {i} { Big (} { frac {(r-m) cos theta} {R}} { Big)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0c0b81f8f8d172b3748c15eebf8ec56030a14a84)
обозначает Полиномы Лежандра и
находятся многополюсный коэффициенты. Другой потенциал
является
![{ Big (} { frac {R} {M}} { Big)} ^ {{i + j}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/944d5e6c1b56c2c599f5f1669bcc63055ba6ee33)
![(P_ {i} P_ {j} -P _ {{i-1}} P _ {{j-1}})](https://wikimedia.org/api/rest_v1/media/math/render/svg/79fbd44cee2051e532b6b43b030002a10d894f9f)
![{ Big [} (- 1) ^ {{i + j}} (r-M (1- cos theta)) + r-M (1+ cos theta) { Big]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e2dea1772d64930c063e901440786d0a85217bb5)
![{ Big (} { frac {R} {M}} { Big)} ^ {j} P_ {j} ,.](https://wikimedia.org/api/rest_v1/media/math/render/svg/13d114d9d23e521604c44ee6395ce5ac9006b06f)
Смотрите также
Рекомендации
- ^ а б c Джереми Брансом Гриффитс, Иржи Подольский. Точное пространство-время в общей теории относительности Эйнштейна. Кембридж: Издательство Кембриджского университета, 2009. Глава 10.
- ^ а б c Р. Готро, Р. Б. Хоффман, А. Арменти. Статические многочастичные системы в общей теории относительности. IL NUOVO CIMENTO B, 1972 г., 7(1): 71–98.
- ^ Терри Пилкингтон, Александр Мелансон, Джозеф Фицджеральд, Иван Бут. «Захваченные и незначительно захваченные поверхности в растворах Шварцшильда, искаженных Вейлем». Классическая и квантовая гравитация, 2011, 28(12): 125018. arXiv: 1102.0999v2 [gr-qc]