Трехместный номер Гассмана - Википедия - Gassmann triple

В математике Гассманн трехместный (или тройка Гассманна-Сунада) является группа грамм вместе с двумя верные действия на наборы Икс и Y, так что Икс и Y не изоморфный в качестве грамм-наборы, но каждый элемент грамм имеет такое же количество фиксированные точки на Икс и Y. Их представил Фриц Гассманн в 1926 г.

Приложения

Тройки Гассмана использовались для построения примеров пар математических объектов с одинаковыми инвариантами, которые не являются изоморфными, включая арифметически эквивалентные числовые поля и изоспектральные графы и изоспектральные римановы многообразия.

Примеры

В Самолет Фано. Два набора тройки Гассмана - это 7 точек и 7 линий.

В простая группа грамм  =  SL3(F2) приказа 168 действует проективная плоскость порядка 2, а действия на 7 точках и 7 строках дают тройку Гассмана.

Рекомендации

  • Босма, Виб; де Смит, Барт (2002), «Об арифметически эквивалентных числовых полях малой степени», в Kohel, David R .; Фикер, Клаус (ред.), Алгоритмическая теория чисел (Сидней, 2002), Конспект лекций по вычисл. Наук, 2369, Берлин, Нью-Йорк: Springer-Verlag, стр. 67–79, Дои:10.1007/3-540-45455-1_6, ISBN  978-3-540-43863-2, МИСТЕР  2041074
  • Гассманн, Фриц (1926), «Bemerkungen zur vorstehenden Arbeit von Hurwitz (Uber Beziehungen zwischen den Primidealen eines algebraischen Körpers und den Substitutionen seiner Gruppe)», Mathematische Zeitschrift, Springer Berlin / Heidelberg, 25: 665–675, Дои:10.1007 / BF01283860, ISSN  0025-5874
  • Сунада, Т. (1985), "Римановы накрытия и изоспектральные многообразия", Анналы математики, 121 (1): 169–186, Дои:10.2307/1971195, JSTOR  1971195