Хайдао Суаньцзин - Haidao Suanjing
Хайдао Суаньцзин (海島 算 經; Математическое руководство Sea Island) был написан Китайский математик Лю Хуэй из Три царства эры (220–280) как продолжение главы 9 Девять глав математического искусства.[1]Вовремя династия Тан, это приложение было извлечено из Девять глав математического искусства как отдельная книга под названием Хайдао суаньцзин(Математическое руководство Sea Island), названной в честь задачи № 1 «Взгляд на морской остров». Во времена ранней династии Тан, Хайдао Суаньцзин был выбран в один из Десять вычислительных канонов как официальные математические тексты для имперских экзаменов по математике.
Содержание
В этой книге было много практических задач по геодезии с использованием геометрии. Эта работа содержала подробные инструкции по измерению расстояний и высот с помощью высоких геодезических шестов и горизонтальных стержней, прикрепленных к ним под прямым углом. Единица измерения 1 ли = 180 Чжан = 1800чи, 1 чжан = 10 чи, 1 чи = 10 цунь, 1 шаг (бу ) = 6 чи. Расчет производился с десятичным значением разряда Стержневой расчет.
Лю Хуэй использовал свой прямоугольник в теореме о прямоугольном треугольнике в качестве математической основы для исследования. С помощью своего принципа «вход-выход-дополнение» он доказал, что площади двух вписанных прямоугольников в два дополнительных прямоугольных треугольника имеют одинаковую площадь, таким образом
CE * AF = FB * BC
Обзор морского острова
В: Теперь, исследуя морской остров, установите два трех полюса чжан на расстоянии одной тысячи шагов друг от друга, чтобы два полюса и остров были на прямой линии. Отступите от передней стойки на 123 ступеньки, глядя на уровень земли, конец шеста на прямой линии с вершиной острова. Отступите на 127 шагов от задней стойки, глаз на уровне земли также совпадает с концом шеста и концом острова. Какова высота острова и какое расстояние до полюса?
О: Высота острова - четыре ли и 55 ступенек, и это 120 ли и 50 ступенек от столба.
Алгоритм: пусть числитель равен высоте полюса, умноженной на расстояние между полюсами, пусть знаменатель будет разностью смещений, прибавьте частное к высоте полюса, чтобы получить высоту острова.
Поскольку расстояние от переднего столба до острова нельзя было измерить напрямую, Лю Хуэй установил два столба одинаковой высоты на известном расстоянии друг от друга и сделал два измерения. Столб был перпендикулярен земле, взгляд с уровня земли, когда наконечник вехи находился на прямой линии визирования с вершиной острова, расстояние между глазом и вехой называлось передним смещением = DG, аналогично, заднее смещение = FH, разница смещений = FH-DG.
- Высота полюса = CD = 30 чи
- Смещение передней стойки = DG = 123 шага
- Смещение задней стойки FH = 127 шагов
- Разница смещения = FH-DG
- Расстояние между полюсами = DF
- Высота острова = AB
- Расстояние переднего столба до острова = BD
Используя свой принцип вписывания прямоугольника в прямоугольный треугольник ABG и ABH, он получил:
- Высота острова AB =
- Расстояние от передней стойки до острова BD =.
Высота сосны на вершине холма
Сосна неизвестной высоты на холме. Установите две стойки по два чжана в каждой, одну спереди и одну сзади, 50 шагов между ними. Пусть задняя стойка совместится с передней. Отступите на 7 шагов и 4 чи, посмотрите на кончик сосны с земли, пока он не выровняется по прямой линии с кончиком шеста. Затем осмотрите ствол дерева, линия взгляда пересекает полюса на расстоянии 2 чи и 8 цун от его вершины. Отступите на 8 шагов и 5 ци от заднего столба, вид с земли также совпадает с верхушкой дерева и верхушкой столба. Какова высота сосны и какое расстояние до столба?Ответ: высота сосны 11 чжан 2 чи 8 цунь, расстояние горы от столба 1 ли и 28 и четыре седьмых ступеньки.
Алгоритм: пусть числитель будет произведением расстояния между полюсами и пересечением от кончика полюса, пусть знаменатель будет разностью смещений. Добавьте высоту шеста к частному, чтобы получить высоту сосны.
Размер квадратной городской стены при взгляде издалека
В: Посмотрите на квадратный город неизвестного размера на юге. Установите восточного гнома и западный шест на расстоянии шести чжан друг от друга, привязанных веревкой на уровне глаз. Выровняйте восточный полюс с северо-восточным и юго-восточным углами. Отойдите на 5 шагов от северного гнома, посмотрите на северо-западный угол города, линия обзора пересекает веревку в 2 чжан 2 чи и 6,5 цунях от восточного конца. Сделайте шаг назад на север на 13 шагов и 2 чи, посмотрите на северо-западный угол города, линия обзора совпадает с западным полюсом. Какова длина квадратного города и какое расстояние до полюса?
А: Длина квадратного города составляет три li 43 и три четверти ступени, расстояние от города до полюса - четыре li и 45 ступенек.
Глубина оврага (с использованием поперечных балок будущего)
Высота здания на равнине, вид с холма
Ширина устья реки, видимая издалека на суше
Глубина прозрачного бассейна
Ширина реки при взгляде с холма
Размер города с горы
Исследования и переводы
Британцы XIX века Протестантский Христианин миссионер Александр Вайли в его статье «Заметки по наукам китайской математики», опубликованной в Вестник Северного Китая 1852 г., был первым, кто представил Математическое руководство Sea Island на запад. В 1912 году японский историк-математик Ёсио Миками опубликовано Развитие математики в Китае и Японии, глава 5 была посвящена этой книге.[2] Французский математик перевел книгу на французский в 1932 году.[1] В 1986 году Анг Тиан Се и Фрэнк Свец перевели хайдао на английский язык.
Сравнив развитие геодезии в Китае и на Западе, Фрэнк Свец пришел к выводу, что «в усилиях по математической геодезии достижения Китая превосходили достижения Запада примерно на тысячу лет».[3]
Рекомендации
- ^ а б Л. ван. Хи, Le Classique d'Ile Maritime: Ouvrage Chinois de III siecle 1932 г.
- ^ Ёсио Миками, Развитие математики в Китае и Японии, глава 5, Хай Тао Суань-цзин или же Классическая арифметическая игра "Морской остров", 1913 г., Лейпциг, перепечатка Chelsea Publishing Co, Нью-Йорк.
- ^ Фрэнк Дж. Свец: Руководство по математике, геодезии и математике Sea Island в Древнем Китае 4.2 Достижения китайских геодезистов, сравнительная ретроспектива с.63 The Pennsylvania State University Press, 1992 ISBN 0-271-00799-0