Символ Кронекера - Kronecker symbol
Эта статья включает Список ссылок, связанное чтение или внешняя ссылка, но его источники остаются неясными, потому что в нем отсутствует встроенные цитаты.Май 2015 г.) (Узнайте, как и когда удалить этот шаблон сообщения) ( |
В теория чисел, то Символ Кронекера, записанный как или , является обобщением Символ Якоби все целые числа . Он был представлен Леопольд Кронекер (1885, стр.770).
Определение
Позволять быть ненулевым целым числом, с простые множители
куда это единица измерения (т.е. ), а находятся простые числа. Позволять быть целым числом. Символ Кронекера определяется
За странный , номер просто обычный Символ Лежандра. Это оставляет случай, когда . Мы определяем к
Поскольку она является продолжением символа Якоби, величина просто когда . Когда , мы определяем его как
Наконец, положим
Этих расширений достаточно, чтобы определить символ Кронекера для всех целочисленных значений. .
Некоторые авторы определяют символ Кронекера только для более ограниченных значений; Например, соответствует и .
Таблица значений
Ниже приводится таблица значений символа Кронекера. с п, k ≤ 30.
k п | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 0 | −1 | 0 | −1 | 0 | 1 | 0 | 1 | 0 | −1 | 0 | −1 | 0 | 1 | 0 | 1 | 0 | −1 | 0 | −1 | 0 | 1 | 0 | 1 | 0 | −1 | 0 | −1 | 0 |
3 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 |
4 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
5 | 1 | −1 | −1 | 1 | 0 | 1 | −1 | −1 | 1 | 0 | 1 | −1 | −1 | 1 | 0 | 1 | −1 | −1 | 1 | 0 | 1 | −1 | −1 | 1 | 0 | 1 | −1 | −1 | 1 | 0 |
6 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | −1 | 0 | 0 | 0 | −1 | 0 | −1 | 0 | 0 | 0 | −1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
7 | 1 | 1 | −1 | 1 | −1 | −1 | 0 | 1 | 1 | −1 | 1 | −1 | −1 | 0 | 1 | 1 | −1 | 1 | −1 | −1 | 0 | 1 | 1 | −1 | 1 | −1 | −1 | 0 | 1 | 1 |
8 | 1 | 0 | −1 | 0 | −1 | 0 | 1 | 0 | 1 | 0 | −1 | 0 | −1 | 0 | 1 | 0 | 1 | 0 | −1 | 0 | −1 | 0 | 1 | 0 | 1 | 0 | −1 | 0 | −1 | 0 |
9 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
10 | 1 | 0 | 1 | 0 | 0 | 0 | −1 | 0 | 1 | 0 | −1 | 0 | 1 | 0 | 0 | 0 | −1 | 0 | −1 | 0 | −1 | 0 | −1 | 0 | 0 | 0 | 1 | 0 | −1 | 0 |
11 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 0 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 0 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 |
12 | 1 | 0 | 0 | 0 | −1 | 0 | 1 | 0 | 0 | 0 | −1 | 0 | 1 | 0 | 0 | 0 | −1 | 0 | 1 | 0 | 0 | 0 | −1 | 0 | 1 | 0 | 0 | 0 | −1 | 0 |
13 | 1 | −1 | 1 | 1 | −1 | −1 | −1 | −1 | 1 | 1 | −1 | 1 | 0 | 1 | −1 | 1 | 1 | −1 | −1 | −1 | −1 | 1 | 1 | −1 | 1 | 0 | 1 | −1 | 1 | 1 |
14 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | −1 | 0 | 1 | 0 | 1 | 0 | −1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | −1 | 0 |
15 | 1 | 1 | 0 | 1 | 0 | 0 | −1 | 1 | 0 | 0 | −1 | 0 | −1 | −1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | −1 | 1 | 0 | 0 | −1 | 0 | −1 | −1 | 0 |
16 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
17 | 1 | 1 | −1 | 1 | −1 | −1 | −1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | 0 | 1 | 1 | −1 | 1 | −1 | −1 | −1 | 1 | 1 | −1 | −1 | −1 | 1 |
18 | 1 | 0 | 0 | 0 | −1 | 0 | 1 | 0 | 0 | 0 | −1 | 0 | −1 | 0 | 0 | 0 | 1 | 0 | −1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | −1 | 0 |
19 | 1 | −1 | −1 | 1 | 1 | 1 | 1 | −1 | 1 | −1 | 1 | −1 | −1 | −1 | −1 | 1 | 1 | −1 | 0 | 1 | −1 | −1 | 1 | 1 | 1 | 1 | −1 | 1 | −1 | 1 |
20 | 1 | 0 | −1 | 0 | 0 | 0 | −1 | 0 | 1 | 0 | 1 | 0 | −1 | 0 | 0 | 0 | −1 | 0 | 1 | 0 | 1 | 0 | −1 | 0 | 0 | 0 | −1 | 0 | 1 | 0 |
21 | 1 | −1 | 0 | 1 | 1 | 0 | 0 | −1 | 0 | −1 | −1 | 0 | −1 | 0 | 0 | 1 | 1 | 0 | −1 | 1 | 0 | 1 | −1 | 0 | 1 | 1 | 0 | 0 | −1 | 0 |
22 | 1 | 0 | −1 | 0 | −1 | 0 | −1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | −1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | −1 | 0 | 1 | 0 |
23 | 1 | 1 | 1 | 1 | −1 | 1 | −1 | 1 | 1 | −1 | −1 | 1 | 1 | −1 | −1 | 1 | −1 | 1 | −1 | −1 | −1 | −1 | 0 | 1 | 1 | 1 | 1 | −1 | 1 | −1 |
24 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | −1 | 0 | 0 | 0 | −1 | 0 | −1 | 0 | 0 | 0 | −1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 |
25 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 |
26 | 1 | 0 | −1 | 0 | 1 | 0 | −1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | −1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | −1 | 0 | −1 | 0 |
27 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 | 1 | −1 | 0 |
28 | 1 | 0 | −1 | 0 | −1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | −1 | 0 | 1 | 0 | −1 | 0 | −1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | −1 | 0 | 1 | 0 |
29 | 1 | −1 | −1 | 1 | 1 | 1 | 1 | −1 | 1 | −1 | −1 | −1 | 1 | −1 | −1 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | 1 | 1 | −1 | −1 | 1 | 0 | 1 |
30 | 1 | 0 | 0 | 0 | 0 | 0 | −1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | −1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
Свойства
Символ Кронекера обладает многими основными свойствами символа Якоби при определенных ограничениях:
- если , иначе .
- пока не , один из равен нулю, а другой отрицателен.
- пока не , один из равен нулю, а другой имеет нечетную часть (определение ниже ) конгруэнтно .
- За , у нас есть в любое время Если дополнительно того же знака, то же верно и для .
- За , , у нас есть в любое время
С другой стороны, символ Кронекера не имеет такой же связи с квадратичные вычеты как символ Якоби. В частности, символ Кронекера даже для может принимать значения независимо от того, является квадратичным вычетом или невычетом по модулю .
Квадратичная взаимность
Символ Кронекера также удовлетворяет следующим версиям квадратичная взаимность закон.
Для любого ненулевого целого числа , позволять обозначить его странная часть: куда нечетное (для , мы положили ). Тогда следующие симметричная версия квадратичной взаимности выполняется для любой пары целых чисел такой, что :
где знак равен если или и равен если и .
Также есть эквивалент несимметричная версия квадратичной взаимности, справедливой для каждой пары относительно простых целых чисел :
Для любого целого числа позволять . Тогда у нас есть другая эквивалентная несимметричная версия, в которой говорится
для каждой пары целых чисел (не обязательно относительно простые).
В дополнительные законы обобщить также на символ Кронекера. Эти законы легко следуют из каждой версии квадратичного закона взаимности, указанной выше (в отличие от символа Лежандра и Якоби, где и основной закон, и дополнительные законы необходимы для полного описания квадратичной взаимности).
Для любого целого числа у нас есть
и для любого нечетного целого числа это
Связь с персонажами Дирихле
Если и , карта настоящий Dirichlet персонаж модуля И наоборот, каждый реальный символ Дирихле может быть записан в этой форме с (за это ).
Особенно, примитивный настоящие персонажи Дирихле находятся в 1–1 корреспонденции с квадратичные поля , куда ненулевой целое число без квадратов (мы можем включить случай для представления главного персонажа, даже если это не правильное квадратичное поле). Персонаж может быть восстановлен с поля как Символ Артина : то есть для положительного простого числа , значение зависит от поведения идеального в кольцо целых чисел :
потом равно символу Кронекера , куда
это дискриминант из . Дирижер является .
Аналогично, если , карта является действительным характером Дирихле модуля Однако не все реальные персонажи могут быть представлены таким образом, например, персонаж не может быть записано как для любого . По закону квадратичной взаимности имеем . Характер можно представить как тогда и только тогда, когда его нечетная часть , в этом случае мы можем взять .
Смотрите также
Рекомендации
- Кронекер, Л. (1885), "Zur Theorie der elliptischen Funktionen", Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin: 761–784
- Монтгомери, Хью Л; Воан, Роберт С. (2007). Мультипликативная теория чисел. I. Классическая теория. Кембриджские исследования в области высшей математики. 97. Издательство Кембриджского университета . ISBN 0-521-84903-9. Zbl 1142.11001.
Эта статья включает материал из символа Кронекера на PlanetMath, который находится под лицензией Лицензия Creative Commons Attribution / Share-Alike.