P-адические когомологии - P-adic cohomology
В математике p-адические когомологии означает теория когомологий для сортов характерных п чьи ценности модули над кольцом п-адические целые числа. Примеры (примерно в историческом порядке) включают:
- Серра Когомологии векторов Витта
- Когомологии Монски – Вашницера
- Инфинитезимальные когомологии
- Кристаллические когомологии
- Жесткие когомологии
Смотрите также
- p-адическая теория Ходжа
- Этальные когомологии, принимая значения над кольцом л-адические целые числа для л≠п
Если внутренняя ссылка неправильно привел вас сюда, вы можете изменить ссылку, чтобы она указывала непосредственно на предполагаемую статью. | Этот статья включает список связанных элементов с одинаковыми именами (или похожими именами).