Socket FM2 + - Википедия - Socket FM2+
Тип | мкПГА -ЗИФ |
---|---|
Форм-факторы чипа | PGA |
Контакты | 906 |
Предшественник | FM2 |
Преемник | AM4 |
Эта статья является частью Сокет процессора серии |
Розетка FM2 + (FM2b, FM2r2) - это Сокет процессора использован AMD рабочий стол ВСУ "Кавери" (Каток -на основе) и ВСУ Годавари (Каток -based) для подключения к материнской плате. FM2 + имеет немного другую конфигурацию контактов, чем Розетка FM2 с двумя дополнительными штыревыми гнездами. APU Socket FM2 + несовместимы с материнскими платами Socket FM2 из-за вышеупомянутых дополнительных контактов. Однако APU с разъемом FM2, такие как Richland и Trinity, совместимы с разъемом FM2 +.[1]
- Модули DIMM с ECC поддерживаются на Разъем FP3 но нет поддерживается пакетом Socket FM2 +. GDDR5 или же HBM память не поддерживаются.[2]
- Есть 3 PCI Express ядра: одно ядро 2 × 16 и два ядра 5 × 8. Имеется 8 настраиваемых портов, которые можно разделить на 2 группы:
- Gfx-group: содержит 2 × 8 портов. Каждый порт может быть ограничен меньшей шириной канала для приложений, которым требуется меньше полос. Кроме того, два порта можно объединить для создания единого канала × 16.
- ГПП-группа: содержит 1 × 4 UMI и 5 портов общего назначения (GPP).
Все каналы PCIe могут поддерживать PCIe 2.x скорости передачи данных. Кроме того, ссылка Gfx может поддерживать PCIe 3.x скорость передачи данных.[2]
Доступные чипсеты см. Концентраторы Fusion Controller (FCH).
Его мобильный аналог - Разъем FP3 (µBGA906).
Радиатор
4 отверстия для крепления радиатора к материнской плате расположены в прямоугольнике с боковыми длинами 48 мм и 96 мм для сокетов AMD. Разъем AM2, Разъем AM2 +, Разъем AM3, Разъем AM3 + и Розетка FM2. Поэтому охлаждающие решения должны быть взаимозаменяемыми.
Обзор возможностей
В следующей таблице показаны особенности AMD с ВСУ (смотрите также: Список ускоренных процессоров AMD ).
Кодовое название | Сервер | Базовый | Торонто | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Микро | Киото | |||||||||||||||||
Рабочий стол | Основной поток | Карризо | Бристольский хребет | Рэйвен Ридж | Пикассо | Ренуар | ||||||||||||
Вход | Llano | Троица | Richland | Кавери | ||||||||||||||
Базовый | Кабини | |||||||||||||||||
Мобильный | Спектакль | Ренуар | ||||||||||||||||
Основной поток | Llano | Троица | Richland | Кавери | Карризо | Бристольский хребет | Рэйвен Ридж | Пикассо | ||||||||||
Вход | Дали | |||||||||||||||||
Базовый | Десна, Онтарио, Сакате | Кабини, Темаш | Бима, Маллинз | Карризо-Л | Stoney Ridge | |||||||||||||
Встроенный | Троица | Белоголовый орлан | Мерлин Сокол, Коричневый сокол | Большая Рогатая Сова | Серый ястреб | Онтарио, Сакате | Кабини | Степной орел, Венценосный орел, LX-Семья | Калифорнийский сокол | Полосатая пустельга | ||||||||
Платформа | Высокая, стандартная и низкая мощность | Низкая и сверхнизкая мощность | ||||||||||||||||
Вышел | Август 2011 г. | Октябрь 2012 г. | Июн 2013 | Январь 2014 г. | Июн 2015 | Июн 2016 | Октябрь 2017 | Янв 2019 | Март 2020 г. | Январь 2011 г. | Май 2013 | Апрель 2014 г. | Май 2015 г. | Февраль 2016 г. | Апрель 2019 | |||
ЦПУ микроархитектура | K10 | Копер | Каток | Экскаватор | "Экскаватор + "[3] | Дзен | Дзен + | Дзен 2 | Рысь | Ягуар | Пума | Пума +[4] | "Экскаватор + " | Дзен | ||||
ЭТО | x86-64 | x86-64 | ||||||||||||||||
Разъем | Рабочий стол | Высокого класса | Нет данных | Нет данных | ||||||||||||||
Основной поток | Нет данных | AM4 | ||||||||||||||||
Вход | FM1 | FM2 | FM2 +[а] | Нет данных | ||||||||||||||
Базовый | Нет данных | Нет данных | AM1 | Нет данных | ||||||||||||||
Другой | FS1 | FS1 +, FP2 | FP3 | FP4 | FP5 | FP6 | FT1 | FT3 | FT3b | FP4 | FP5 | |||||||
PCI Express версия | 2.0 | 3.0 | 2.0 | 3.0 | ||||||||||||||
Fab. (нм ) | GF 32ШП (HKMG ТАК ЧТО Я ) | GF 28ШП (HKMG навалом) | GF 14LPP (FinFET масса) | GF 12LP (FinFET оптом) | TSMC N7 (FinFET оптом) | TSMC N40 (масса) | TSMC N28 (HKMG навалом) | GF 28SHP (HKMG навалом) | GF 14LPP (FinFET масса) | |||||||||
Умереть площадь (мм2) | 228 | 246 | 245 | 245 | 250 | 210[5] | 156 | 75 (+ 28 FCH ) | 107 | ? | 125 | 149 | ||||||
Мин. TDP (Вт) | 35 | 17 | 12 | 10 | 4.5 | 4 | 3.95 | 10 | 6 | |||||||||
Макс ВСУ TDP (Вт) | 100 | 95 | 65 | 18 | 25 | |||||||||||||
Максимальная базовая частота APU (ГГц) | 3 | 3.8 | 4.1 | 4.1 | 3.7 | 3.8 | 3.6 | 3.7 | 3.8 | 1.75 | 2.2 | 2 | 2.2 | 3.2 | 3.3 | |||
Максимальное количество APU на узел[b] | 1 | 1 | ||||||||||||||||
Максимум ЦПУ[c] ядра на ВСУ | 4 | 8 | 2 | 4 | 2 | |||||||||||||
Максимум потоки на ядро ЦП | 1 | 2 | 1 | 2 | ||||||||||||||
Целочисленная структура | 3+3 | 2+2 | 4+2 | 4+2+1 | 1+1+1+1 | 2+2 | 4+2 | |||||||||||
i386, i486, i586, CMOV, NOPL, i686, PAE, Бит NX, CMPXCHG16B, AMD-V, RVI, ПРО и 64-битный LAHF / SAHF | ||||||||||||||||||
IOMMU[d] | Нет данных | |||||||||||||||||
ИМТ1, AES-NI, CLMUL, и F16C | Нет данных | |||||||||||||||||
MOVBE | Нет данных | |||||||||||||||||
AVIC, ИМТ2 и RDRAND | Нет данных | |||||||||||||||||
ADX, SHA, RDSEED, SMAP, SMEP, XSAVEC, XSAVES, XRSTORS, CLFLUSHOPT и CLZERO | Нет данных | Нет данных | ||||||||||||||||
WBNOINVD, CLWB, RDPID, RDPRU и MCOMMIT | Нет данных | Нет данных | ||||||||||||||||
FPUs на основной | 1 | 0.5 | 1 | 1 | 0.5 | 1 | ||||||||||||
Трубы на FPU | 2 | 2 | ||||||||||||||||
Ширина трубы FPU | 128 бит | 256 бит | 80-битный | 128 бит | ||||||||||||||
ЦПУ Набор инструкций SIMD уровень | SSE4a[e] | AVX | AVX2 | SSSE3 | AVX | AVX2 | ||||||||||||
3DNow! | 3DNow! + | Нет данных | Нет данных | |||||||||||||||
PREFETCH / PREFETCHW | ||||||||||||||||||
FMA4, LWP, TBM, и XOP | Нет данных | Нет данных | Нет данных | Нет данных | ||||||||||||||
FMA3 | ||||||||||||||||||
L1 кэш данных на ядро (КиБ) | 64 | 16 | 32 | 32 | ||||||||||||||
Кэш данных L1 ассоциативность (способы) | 2 | 4 | 8 | 8 | ||||||||||||||
Кешей инструкций L1 на основной | 1 | 0.5 | 1 | 1 | 0.5 | 1 | ||||||||||||
Максимальный общий кэш инструкций L1 APU (КиБ) | 256 | 128 | 192 | 256 | 512 | 64 | 128 | 96 | 128 | |||||||||
Кэш инструкций L1 ассоциативность (способы) | 2 | 3 | 4 | 8 | 2 | 3 | 4 | |||||||||||
Кеши L2 на основной | 1 | 0.5 | 1 | 1 | 0.5 | 1 | ||||||||||||
Максимальный общий объем кеш-памяти второго уровня APU (МиБ) | 4 | 2 | 4 | 1 | 2 | 1 | ||||||||||||
Кэш L2 ассоциативность (способы) | 16 | 8 | 16 | 8 | ||||||||||||||
Всего ВСУ Кэш L3 (МиБ) | Нет данных | 4 | 8 | Нет данных | 4 | |||||||||||||
Кэш APU L3 ассоциативность (способы) | 16 | 16 | ||||||||||||||||
Схема кеш-памяти L3 | Жертва | Нет данных | Жертва | Жертва | ||||||||||||||
Максимальный запас DRAM поддерживать | DDR3-1866 | DDR3-2133 | DDR3-2133, DDR4-2400 | DDR4-2400 | DDR4-2933 | DDR4-3200, LPDDR4-4266 | DDR3L-1333 | DDR3L-1600 | DDR3L-1866 | DDR3-1866, DDR4-2400 | DDR4-2400 | |||||||
Максимум DRAM каналов на APU | 2 | 1 | 2 | |||||||||||||||
Максимальный запас DRAM пропускная способность (ГБ / с) на APU | 29.866 | 34.132 | 38.400 | 46.932 | 68.256 | 10.666 | 12.800 | 14.933 | 19.200 | 38.400 | ||||||||
GPU микроархитектура | TeraScale 2 (VLIW5) | TeraScale 3 (VLIW4) | GCN 2-го поколения | GCN 3-го поколения | GCN 5-го поколения[6] | TeraScale 2 (VLIW5) | GCN 2-го поколения | GCN 3-го поколения[6] | GCN 5-го поколения | |||||||||
GPU Набор инструкций | TeraScale Набор инструкций | Набор инструкций GCN | TeraScale Набор инструкций | Набор инструкций GCN | ||||||||||||||
Максимальная базовая частота графического процессора (МГц) | 600 | 800 | 844 | 866 | 1108 | 1250 | 1400 | 2100 | 538 | 600 | ? | 847 | 900 | 1200 | ||||
Максимальное количество базовых графических процессоров GFLOPS[f] | 480 | 614.4 | 648.1 | 886.7 | 1134.5 | 1760 | 1971.2 | 2150.4 | 86 | ? | ? | ? | 345.6 | 460.8 | ||||
3D двигатель[грамм] | До 400: 20: 8 | До 384: 24: 6 | До 512: 32: 8 | До 704: 44: 16[7] | До 512:?:? | 80:8:4 | 128:8:4 | До 192:?:? | До 192:?:? | |||||||||
IOMMUv1 | IOMMUv2 | IOMMUv1 | ? | IOMMUv2 | ||||||||||||||
Видео декодер | УВД 3.0 | УВД 4.2 | УВД 6.0 | VCN 1.0[8] | VCN 2.0[9] | УВД 3.0 | УВД 4.0 | УВД 4.2 | УВД 6.0 | УВД 6.3 | VCN 1.0 | |||||||
Кодировщик видео | Нет данных | VCE 1.0 | VCE 2.0 | VCE 3.1 | Нет данных | VCE 2.0 | VCE 3.1 | |||||||||||
AMD Fluid Motion | ||||||||||||||||||
Энергосбережение GPU | PowerPlay | PowerTune | PowerPlay | PowerTune[10] | ||||||||||||||
TrueAudio | Нет данных | [11] | Нет данных | |||||||||||||||
FreeSync | 1 2 | 1 2 | ||||||||||||||||
HDCP[час] | ? | 1.4 | 1.4 2.2 | ? | 1.4 | 1.4 2.2 | ||||||||||||
PlayReady[час] | Нет данных | 3.0 еще нет | Нет данных | 3.0 еще нет | ||||||||||||||
Поддерживаемые дисплеи[я] | 2–3 | 2–4 | 3 | 3 (рабочий стол) 4 (мобильный, встроенный) | 4 | 2 | 3 | 4 | ||||||||||
/ DRM / radeon [j][13][14] | Нет данных | Нет данных | ||||||||||||||||
/ drm / amdgpu [j][15] | Нет данных | [16] | Нет данных | [16] |
- ^ Модели APU: A8-7680, A6-7480. Только процессор: Athlon X4 845.
- ^ ПК будет одним узлом.
- ^ APU сочетает в себе процессор и графический процессор. У обоих есть ядра.
- ^ Требуется поддержка прошивки.
- ^ Нет SSE4. Нет SSSE3.
- ^ Одинарная точность производительность рассчитывается исходя из базовой (или ускоренной) тактовой частоты ядра на основе FMA операция.
- ^ Унифицированные шейдеры : блоки наложения текстуры : единицы вывода рендеринга
- ^ а б Для воспроизведения защищенного видеоконтента также требуется поддержка карты, операционной системы, драйверов и приложений. Для этого также необходим совместимый дисплей HDCP. HDCP является обязательным для вывода определенных аудиоформатов, что накладывает дополнительные ограничения на настройку мультимедиа.
- ^ Чтобы питать более двух дисплеев, дополнительные панели должны иметь собственный DisplayPort поддерживать.[12] В качестве альтернативы можно использовать активные адаптеры DisplayPort-to-DVI / HDMI / VGA.
- ^ а б DRM (Менеджер прямого рендеринга ) является компонентом ядра Linux. Поддержка в этой таблице относится к самой последней версии.
внешняя ссылка
- ^ Нильс Брукхейсен. «Отчет: готовящийся к выпуску Socket FM2 + будет поддерживать старые APU Trinity и Richland». Оборудование Тома.
- ^ а б "49125_15h_Models_30h-3Fh_BKDG" (pdf). AMD.
- ^ «AMD представляет APU 7-го поколения: Excavator mk2 в Бристоль-Ридж и Стони-Ридж для ноутбуков». 31 мая 2016. Получено 3 января 2020.
- ^ Семейство APU AMD Mobile Carrizo, призванное обеспечить значительный скачок в производительности и энергоэффективности в 2015 году » (Пресс-релиз). 20 ноября 2014 г.. Получено 16 февраля 2015.
- ^ «Руководство по сравнению мобильных процессоров, версия 13.0, стр. 5: Полный список мобильных процессоров AMD». TechARP.com. Получено 13 декабря 2017.
- ^ а б «Графические процессоры AMD VEGA10 и VEGA11 обнаружены в драйвере OpenCL». VideoCardz.com. Получено 6 июн 2017.
- ^ Катресс, Ян (1 февраля 2018 г.). «Ядра Zen и Vega: APU Ryzen для AM4 - AMD Tech Day на CES: Обнародована дорожная карта 2018, с APU Ryzen, Zen + на 12-нм, Vega на 7-нм». Анандтех. Получено 7 февраля 2018.
- ^ Ларабель, Майкл (17 ноября 2017 г.). «Поддержка кодирования Radeon VCN появляется в Mesa 17.4 Git». Фороникс. Получено 20 ноября 2017.
- ^ Лю, Лев (2020-09-04). "Добавить поддержку Renoir VCN decode". Получено 2020-09-11.
Имеет тот же блок VCN2.x, что и Navi1x
- ^ Тони Чен; Джейсон Гривз, «Архитектура AMD Graphics Core Next (GCN)» (PDF), AMD, получено 13 августа 2016
- ^ «Технический взгляд на архитектуру AMD Kaveri». Полуточный. Получено 6 июля 2014.
- ^ «Как подключить три или более монитора к графической карте AMD Radeon ™ HD 5000, HD 6000 и HD 7000?». AMD. Получено 8 декабря 2014.
- ^ Эйрли, Дэвид (26 ноября 2009 г.). «DisplayPort поддерживается драйвером KMS, встроенным в ядро Linux 2.6.33». Получено 16 января 2016.
- ^ "Матрица функций Radeon". freedesktop.org. Получено 10 января 2016.
- ^ Дойче, Александр (16 сентября 2015). "XDC2015: AMDGPU" (PDF). Получено 16 января 2016.
- ^ а б Мишель Дэнзер (17 ноября 2016 г.). "[ОБЪЯВЛЕНИЕ] xf86-video-amdgpu 1.2.0". lists.x.org.