Этот математика -связанный список дает Мубаракзянова классификация вещественных алгебр Ли малой размерности, издано на русском языке в 1963 году.[1] Дополняет статью о Алгебра Ли в районе абстрактная алгебра.
Английская версия и обзор этой классификации были опубликованы Popovych et al.[2] в 2003 г.
Классификация Мубаракзянова
Позволять
быть
-размерный Алгебра Ли над поле из действительные числа с генераторами
,
.[требуется разъяснение ] Для каждой алгебры
мы приводим только ненулевые коммутаторы между базисными элементами.
Одномерный
, абелевский.
Двумерный
, абелева
;
, разрешимый
,
![{ displaystyle [e_ {1}, e_ {2}] = e_ {1}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/963764b5b09e26abd719db414ac0b5072adef3dc)
Трехмерный
, абелева, Бьянки I;
, разложимая разрешимая, Бьянки III;
, Алгебра Гейзенберга – Вейля, нильпотентная, Бьянки II,
![{ displaystyle [e_ {2}, e_ {3}] = e_ {1};}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8c182b4694187494050b54e40dad06c1c430ab54)
, разрешима, Бьянки IV,
![{ displaystyle [e_ {1}, e_ {3}] = e_ {1}, quad [e_ {2}, e_ {3}] = e_ {1} + e_ {2};}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5935ebf5ca03ea4b1ca634f2e3af78acbbe33639)
, разрешима, Бьянки V,
![{ displaystyle [e_ {1}, e_ {3}] = e_ {1}, quad [e_ {2}, e_ {3}] = e_ {2};}](https://wikimedia.org/api/rest_v1/media/math/render/svg/974c2e0bcfb71d97cb9953e7bca3b2712ba90942)
, разрешима, Бьянки VI, Алгебра Пуанкаре
когда
,
![{ displaystyle [e_ {1}, e_ {3}] = e_ {1}, quad [e_ {2}, e_ {3}] = alpha e_ {2}, quad -1 leq alpha < 1, quad alpha neq 0;}](https://wikimedia.org/api/rest_v1/media/math/render/svg/98b285ff018491e6c493addc20965f5a6c1ed216)
, разрешима, Бьянки VII,
![{ displaystyle [e_ {1}, e_ {3}] = beta e_ {1} -e_ {2}, quad [e_ {2}, e_ {3}] = e_ {1} + beta e_ { 2}, quad beta geq 0;}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b961cad12339fbcd9f00d26349b56de57370715c)
, простой, Бьянки VIII, ![{ Displaystyle { mathfrak {sl}} (2, mathbb {R}),}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2b8889cee03f099bc80ec80733e58d1d4b33cf30)
![{ displaystyle [e_ {1}, e_ {2}] = e_ {1}, quad [e_ {2}, e_ {3}] = e_ {3}, quad [e_ {1}, e_ {3 }] = 2e_ {2};}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ab1ff7eac20f65d2ea43d92ee5e9530a5d74f779)
, простой, Бьянки VIII, ![{ mathfrak {so}} (3),](https://wikimedia.org/api/rest_v1/media/math/render/svg/b0b216599a18df448fe258d3e160a969c64c7dc2)
![{ displaystyle [e_ {2}, e_ {3}] = e_ {1}, quad [e_ {3}, e_ {1}] = e_ {2}, quad [e_ {1}, e_ {2 }] = e_ {3}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e2f1e2825a50b65a724c05fee39324b42de770ac)
Алгебра
можно рассматривать как крайний случай
, когда
, образуя сжатие алгебры Ли.
Над полем
алгебры
,
изоморфны
и
, соответственно.
Четырехмерный
, абелева;
, разложимая разрешимая,
![{ displaystyle [e_ {1}, e_ {2}] = e_ {1};}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c536c4d95b5fa8a2d43c9bdd7c5d9becd5f68c79)
, разложимая разрешимая,
![{ displaystyle [e_ {1}, e_ {2}] = e_ {1} quad [e_ {3}, e_ {4}] = e_ {3};}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6e3cc0ba7dbd31672835b738f0d23d481d0dc6b8)
, разложимый нильпотент,
![{ displaystyle [e_ {2}, e_ {3}] = e_ {1};}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8c182b4694187494050b54e40dad06c1c430ab54)
, разложимая разрешимая,
![{ displaystyle [e_ {1}, e_ {3}] = e_ {1}, quad [e_ {2}, e_ {3}] = e_ {1} + e_ {2};}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5935ebf5ca03ea4b1ca634f2e3af78acbbe33639)
, разложимая разрешимая,
![{ displaystyle [e_ {1}, e_ {3}] = e_ {1}, quad [e_ {2}, e_ {3}] = e_ {2};}](https://wikimedia.org/api/rest_v1/media/math/render/svg/974c2e0bcfb71d97cb9953e7bca3b2712ba90942)
, разложимая разрешимая,
![{ displaystyle [e_ {1}, e_ {3}] = e_ {1}, quad [e_ {2}, e_ {3}] = alpha e_ {2}, quad -1 leq alpha < 1, quad alpha neq 0;}](https://wikimedia.org/api/rest_v1/media/math/render/svg/98b285ff018491e6c493addc20965f5a6c1ed216)
, разложимая разрешимая,
![{ displaystyle [e_ {1}, e_ {3}] = beta e_ {1} -e_ {2} quad [e_ {2}, e_ {3}] = e_ {1} + beta e_ {2 }, quad beta geq 0;}](https://wikimedia.org/api/rest_v1/media/math/render/svg/60c92c7ac9f1cae0ead75eb62f316d5185bcd639)
, неразрешимая,
![{ displaystyle [e_ {1}, e_ {2}] = e_ {1}, quad [e_ {2}, e_ {3}] = e_ {3}, quad [e_ {1}, e_ {3 }] = 2e_ {2};}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ab1ff7eac20f65d2ea43d92ee5e9530a5d74f779)
, неразрешимая,
![{ displaystyle [e_ {1}, e_ {2}] = e_ {3}, quad [e_ {2}, e_ {3}] = e_ {1}, quad [e_ {3}, e_ {1 }] = e_ {2};}](https://wikimedia.org/api/rest_v1/media/math/render/svg/177d2292b9f04fba52105937252652503ca8aac7)
, неразложимый нильпотент,
![{ displaystyle [e_ {2}, e_ {4}] = e_ {1}, quad [e_ {3}, e_ {4}] = e_ {2};}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f3234d4a8d3180d65f53d821cdc21ca6f45fc827)
, неразложимая разрешимая,
![{ displaystyle [e_ {1}, e_ {4}] = beta e_ {1}, quad [e_ {2}, e_ {4}] = e_ {2}, quad [e_ {3}, e_ {4}] = e_ {2} + e_ {3}, quad beta neq 0;}](https://wikimedia.org/api/rest_v1/media/math/render/svg/83aba1442f700da3e4278c930585757a277b660d)
, неразложимая разрешимая,
![{ displaystyle [e_ {1}, e_ {4}] = e_ {1}, quad [e_ {3}, e_ {4}] = e_ {2};}](https://wikimedia.org/api/rest_v1/media/math/render/svg/5b2b0ab15fcc0d68f7b4dfb2942e9560ffc762b4)
, неразложимая разрешимая,
![{ displaystyle [e_ {1}, e_ {4}] = e_ {1}, quad [e_ {2}, e_ {4}] = e_ {1} + e_ {2}, quad [e_ {3 }, e_ {4}] = e_ {2} + e_ {3};}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6ebcc9ae5c931d8859ead56d35b3c434801408a1)
, неразложимая разрешимая,
![{ displaystyle [e_ {1}, e_ {4}] = alpha e_ {1}, quad [e_ {2}, e_ {4}] = beta e_ {2}, quad [e_ {3} , e_ {4}] = gamma e_ {3}, quad alpha beta gamma neq 0;}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b57f7c115385ddd05c393cf69c12a9e028b540cb)
, неразложимая разрешимая,
![{ displaystyle [e_ {1}, e_ {4}] = alpha e_ {1}, quad [e_ {2}, e_ {4}] = beta e_ {2} -e_ {3}, quad [e_ {3}, e_ {4}] = e_ {2} + beta e_ {3}, quad alpha> 0;}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0d2205ea932e8b731d0aceb604cd3fb9af8233ab)
, неразложимая разрешимая,
![{ displaystyle [e_ {2}, e_ {3}] = e_ {1}, quad [e_ {1}, e_ {4}] = 2e_ {1}, quad [e_ {2}, e_ {4 }] = e_ {2}, quad [e_ {3}, e_ {4}] = e_ {2} + e_ {3};}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bb05c0b3c9090a357a556fcf9cd79b2723651b15)
, неразложимая разрешимая,
![{ displaystyle [e_ {2}, e_ {3}] = e_ {1}, quad [e_ {1}, e_ {4}] = (1+ beta) e_ {1}, quad [e_ { 2}, e_ {4}] = e_ {2}, quad [e_ {3}, e_ {4}] = beta e_ {3}, quad -1 leq beta leq 1;}](https://wikimedia.org/api/rest_v1/media/math/render/svg/941282388a6088ed8e4a431d6632e3074b01cf59)
, неразложимая разрешимая,
![{ displaystyle [e_ {2}, e_ {3}] = e_ {1}, quad [e_ {1}, e_ {4}] = 2 alpha e_ {1}, quad [e_ {2}, e_ {4}] = alpha e_ {2} -e_ {3}, quad [e_ {3}, e_ {4}] = e_ {2} + alpha e_ {3}, quad alpha geq 0;}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dc56449e914e919a9bd8df0afed266450b8e86e2)
, неразложимая разрешимая,
![{ displaystyle [e_ {1}, e_ {3}] = e_ {1}, quad [e_ {2}, e_ {3}] = e_ {2}, quad [e_ {1}, e_ {4 }] = - e_ {2}, quad [e_ {2}, e_ {4}] = e_ {1}.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/6beef23a27c53047793aab1a5f974b8987bd253b)
Алгебра
можно рассматривать как крайний случай
, когда
, образуя сжатие алгебры Ли.
Над полем
алгебры
,
,
,
,
изоморфны
,
,
,
,
, соответственно.
Примечания
Рекомендации