Теория внутренней модели - Википедия - Inner model theory

В теория множеств, внутренняя модель теория изучение определенных модели из ZFC или какой-то его фрагмент или усиление. Обычно эти модели переходный подмножества или же подклассы из Вселенная фон Неймана V, а иногда и общее расширение из V. Теория внутренней модели изучает отношения этих моделей к определенность, большие кардиналы, и описательная теория множеств. Несмотря на название, он считается скорее разделом теории множеств, чем теория моделей.

Примеры

  • В учебный класс всех наборов - это внутренняя модель, содержащая все остальные внутренние модели.
  • Первым нетривиальным примером внутренней модели был конструируемая вселенная L разработан Курт Гёдель. Каждая модель M ZF имеет внутреннюю модель LM удовлетворение аксиома конструктивности, и это будет самая маленькая внутренняя модель M содержащий все ординалы M. Независимо от свойств исходной модели, LM удовлетворит гипотеза обобщенного континуума и комбинаторные аксиомы, такие как алмазный принцип ◊.
  • HOD, класс наследственно наследуемых множеств. порядковый определимый, образуют внутреннюю модель, которая удовлетворяет ZFC.
  • Наборы, которые наследственно определимы над счетной последовательностью ординалов, образуют внутреннюю модель, используемую в Теорема Соловея.
  • L (R), наименьшая внутренняя модель, содержащая все действительные числа и все порядковые числа.
  • L [U], класс, построенный относительно нормального неглавного, -полный ультрафильтр U над порядковым номером (видеть нулевой кинжал ).

Последовательность результатов

Одним из важных применений внутренних моделей является доказательство результатов согласованности. Если можно показать, что каждая модель аксиомы А имеет внутреннюю модель, удовлетворяющую аксиоме B, то если А является последовательный, B также должны быть последовательными. Этот анализ наиболее полезен, когда А является аксиомой, не зависящей от ZFC, например аксиома большого кардинала; это один из инструментов, используемых для ранжирования аксиом по постоянство прочности.

Рекомендации

  • Jech, Thomas (2003), Теория множеств, Springer Monographs in Mathematics, Берлин, Нью-Йорк: Springer-Verlag
  • Канамори, Акихиро (2003), Высшая бесконечность: большие кардиналы в теории множеств с самого начала (2-е изд.), Берлин, Нью-Йорк: Springer-Verlag, ISBN  978-3-540-00384-7

Смотрите также