Без координат - Википедия - Coordinate-free

А безкоординатный, или же без компонентов, лечение научная теория или же математический тема развивает свои концепции на любой форме многообразие без ссылки на какой-либо конкретный система координат.

Преимущества

Бескординатные методы обработки обычно позволяют использовать более простые системы уравнений и по своей сути ограничивают определенные типы несогласованности, позволяя добиться большего. математическая элегантность ценой некоторых абстракция из подробных формул, необходимых для оценки этих уравнений в конкретной системе координат.

История

Единственным доступным подходом к геометрия (и теперь известны как синтетическая геометрия ) до разработки аналитическая геометрия к Декарт. После нескольких столетий, в основном, основанной на координатах экспозиции, современная тенденция, как правило, заключается в том, чтобы знакомить студентов с бескоординатным лечением на ранних этапах, а затем выводить основанные на координаты лечения из бескоординатного лечения, а не наоборот.

Приложения

Поля, которые теперь часто вводятся с бескоординатными обработками, включают векторное исчисление, тензоры, дифференциальная геометрия, и компьютерная графика.[1]

В физика, существование бескординатных трактовок физических теорий является следствием принципа общая ковариация.

Смотрите также

Рекомендации

  1. ^ ДеРоуз, Тони Д. Трехмерная компьютерная графика: бескординатный подход. Получено 25 сентября 2017.