Энтропическая сила - Entropic force

В физика, энтропийная сила действие в системе - это возникающее явление в результате статистической тенденции всей системы к увеличению ее энтропия, а не от конкретной основной силы в атомном масштабе.[1][2]Энтропийную силу можно рассматривать как порождение энтропийного взаимодействия. Понятие энтропийного взаимодействия обычно употреблялось в сослагательном наклонении. Например: «макромолекулы, как будто, энтропийно отталкиваются друг от друга на небольшом расстоянии и энтропийно притягиваются друг к другу на большом расстоянии».[3] С современной точки зрения[4][5] энтропийное взаимодействие рассматривается как реальное взаимодействие и рассматривается как взаимное влияние открытых термодинамических систем друг на друга посредством передачи информации об их состояниях, изменения их энтропий и перевода этих систем в более вероятные условия. Энтропийное взаимодействие - это квинтэссенция физического взаимодействия, которое реализуется посредством хорошо известных основных взаимодействий (гравитационного, электромагнитного, сильного и слабого ядерных) через процессы, происходящие в других частях Вселенной, включая Солнечную систему, нашу планету Земля и живые организмы. Основные взаимодействия считаются дочерними по отношению к энтропийному взаимодействию. Энтропийное взаимодействие не является следствием существования некоторого энтропийного заряда и сопровождающего его поля. Это не следует называть распределением энтропии в пространстве. Энтропийное взаимодействие отражает только «порядок» и «структуру» пространства, состояние пространства и физических систем в нем и, в конечном итоге, влияет на энергию, поведение и эволюцию таких систем, а также пространства в целом. Энтропийное взаимодействие приводит к изменению симметрии, свободной энергии и других характеристик физической системы. Используя это взаимодействие, все материальные объекты в Природе оказывают определенное влияние друг на друга, независимо от расстояния между ними.

Математическая формулировка

в канонический ансамбль, энтропийная сила связанный с разделом макросостояния дан кем-то:[6][7]

где это температура, энтропия, связанная с макросостоянием и это настоящее макросостояние.


Примеры

Принцип маха

Согласно с Принцип маха,[8] законы локальной физики определяются крупномасштабной структурой Вселенной, и изменения в любой части Вселенной оказывают соответствующее влияние на все ее части.[9] В первую очередь такие изменения обусловлены энтропийным взаимодействием. Как только они получают место в одной части вселенной, энтропия вселенной в целом также изменяется. То есть вся Вселенная «чувствует» такие изменения одновременно. Другими словами, энтропийное взаимодействие между различными частями любой термодинамической системы происходит мгновенно, без передачи какого-либо материального вещества, что означает, что это всегда дальнодействие. После этого внутри системы возникают какие-то процессы, передающие какие-то вещества или порции энергии в нужном направлении. Эти действия производятся одним (или несколькими) базовыми взаимодействиями в соответствии с режимом действия на близком расстоянии.[10]

Рассеивание тепла

Рассеивание тепла - один из примеров энтропийного взаимодействия. Когда одна сторона металлического полюса нагревается, вдоль полюса создается неоднородное распределение температуры. Из-за энтропийного взаимодействия между различными частями полюса энтропия всего полюса мгновенно уменьшится. В то же время появляется тенденция к однородному распределению температуры (и тем самым к увеличению энтропии полюса). Это будет действие на большие расстояния. Процесс теплопроводность появится, чтобы реализовать эту тенденцию краткосрочным действием. В целом, это пример сосуществования дальних и краткосрочных действий в одном процессе.

Давление идеального газа

В внутренняя энергия из идеальный газ зависит только от его температуры, а не от объема контейнера, в котором он находится, поэтому это не энергия эффект, который имеет тенденцию увеличивать объем коробки как газ давление делает. Это означает, что давление идеального газа имеет энтропийное происхождение.[11]

Каково происхождение такой энтропийной силы? Самый общий ответ заключается в том, что эффект тепловых флуктуаций имеет тенденцию приближать термодинамическую систему к макроскопическому состоянию, которое соответствует максимуму в количестве микроскопические состояния (или микросостояния) которые совместимы с этим макроскопическим состоянием. Другими словами, тепловые флуктуации приводят систему к макроскопическому состоянию максимума. энтропия.[11]

Броуновское движение

Энтропийный подход к Броуновское движение был первоначально предложен Р. М. Нойманом.[6][12] Нейман вывел энтропийную силу для частицы, совершающей трехмерное броуновское движение, используя Уравнение Больцмана, обозначив эту силу как диффузионная движущая сила или радиальная сила. В статье показаны три примера систем, демонстрирующих такую ​​силу:

Полимеры

Стандартный пример энтропийной силы - это эластичность свободно сочлененного полимер молекула.[12] Для идеальная цепочка, максимизация его энтропии означает уменьшение расстояния между двумя его свободными концами. Следовательно, сила, которая имеет тенденцию к сжатию цепи, прилагается идеальной цепью между двумя ее свободными концами. Эта энтропийная сила пропорциональна расстоянию между двумя концами.[11][13] Энтропийная сила свободно соединенной цепи имеет ясное механическое происхождение и может быть вычислена с использованием ограниченной лагранжевой динамики.[14]

Гидрофобная сила

Капли воды на поверхности травы.

Другой пример энтропийной силы - это гидрофобный сила. При комнатной температуре это частично происходит из-за потери энтропии трехмерной сеткой молекул воды, когда они взаимодействуют с молекулами растворенное вещество. Каждая молекула воды способна

Следовательно, молекулы воды могут образовывать протяженную трехмерную сеть. Введение не связывающей водород поверхности нарушает эту сеть. Молекулы воды перестраиваются вокруг поверхности, чтобы минимизировать количество разорванных водородных связей. Это в отличие от фтороводород (который может принять 3, но пожертвовать только 1) или аммиак (которые могут отдавать 3, но принимать только 1), которые в основном образуют линейные цепи.

Если бы введенная поверхность имела ионную или полярную природу, молекулы воды стояли бы вертикально на 1 (вдоль оси орбитали ионной связи) или 2 (вдоль результирующей оси полярности) четырех sp.3 орбитали.[15] Эти ориентации обеспечивают легкое движение, то есть степени свободы, и, таким образом, минимально понижают энтропию. Но поверхность умеренной кривизны, не связывающая водородные связи, заставляет молекулу воды плотно сидеть на поверхности, распространяя 3 водородные связи по касательной к поверхности, которые затем блокируются в клатрат -подобная форма корзины. Молекулы воды, входящие в эту клатратоподобную корзину вокруг поверхности, не связывающей водородные связи, ограничены в своей ориентации. Таким образом, энтропийно благоприятствует любое событие, которое минимизирует такую ​​поверхность. Например, когда две такие гидрофобные частицы подходят очень близко, окружающие их клатратные корзины сливаются. Это высвобождает часть молекул воды в основной объем воды, что приводит к увеличению энтропии.

Другой связанный и противоречащий интуиции пример энтропийной силы: сворачивание белка, что является самопроизвольный процесс и где гидрофобный эффект также играет роль.[16] Структуры водорастворимых белков обычно имеют ядро, в котором гидрофобные боковые цепи закопаны из воды, что стабилизирует сложенное состояние.[17] Заряженный и полярный боковые цепи расположены на поверхности, открытой для растворителя, где они взаимодействуют с окружающими молекулами воды. Сведение к минимуму количества гидрофобных боковых цепей, подверженных воздействию воды, является основной движущей силой процесса складывания,[17][18][19] хотя образование водородных связей внутри белка также стабилизирует структуру белка.[20][21]

Коллоиды

Энтропийные силы важны и широко распространены в физике коллоиды,[22] где они несут ответственность за сила истощения, и упорядочение твердых частиц, таких как кристаллизация твердых сфер изотропно-нематический переход в жидкокристаллический фазы твердых стержней и упорядочение твердых многогранников.[22][23] Из-за этого энтропийные силы могут быть важным двигателем самосборка[22]

Энтропийные силы возникают в коллоидных системах из-за осмотическое давление это происходит из-за скопления частиц. Это было впервые обнаружено и наиболее интуитивно понятно для смесей коллоид-полимер, описанных Модель Асакуры – Осавы. В этой модели полимеры аппроксимируются как сферы конечного размера, которые могут проникать друг в друга, но не могут проникать через коллоидные частицы. Неспособность полимеров проникать в коллоиды приводит к образованию области вокруг коллоидов, в которой плотность полимера снижается. Если области пониженной плотности полимера вокруг двух коллоидов перекрываются друг с другом за счет приближения коллоидов друг к другу, полимеры в системе получают дополнительный свободный объем, равный объему пересечения областей пониженной плотности. Дополнительный свободный объем вызывает увеличение энтропии полимеров и заставляет их образовывать локально плотно упакованные агрегаты. Подобный эффект наблюдается в достаточно плотных коллоидных системах без полимеров, где осмотическое давление также приводит к локальной плотной упаковке.[22] коллоидов в разнообразные структуры [23] которые можно рационально спроектировать, изменив форму частиц.[24] Эти эффекты для анизотропных частиц называются направленными энтропийными силами.[25][26]

Спорные примеры

Некоторые силы, которые обычно считаются обычные вооруженные силы утверждалось, что они действительно энтропийны по своей природе. Эти теории остаются спорными и являются предметом постоянной работы. Мэтт Виссер, профессор математики Университета Виктории в Веллингтоне, Новая Зеландия, по специальности «Консервативные энтропийные силы» [27] критикует избранные подходы, но в целом заключает:

Нет никаких разумных сомнений относительно физической реальности энтропийных сил и нет разумных сомнений в том, что классическая (и полуклассическая) общая теория относительности тесно связана с термодинамикой. Основываясь на работе Якобсона, Тану Падманабхан и другие, есть также веские основания подозревать, что термодинамическая интерпретация полностью релятивистских уравнений Эйнштейна возможна.

Сила тяжести

В 2009, Эрик Верлинде утверждал, что гравитацию можно объяснить как энтропийную силу.[7] Он утверждал (аналогично результату Якобсона), что гравитация является следствием «информации, связанной с положением материальных тел». Эта модель сочетает в себе термодинамический подход к гравитации с Жерар т Хофт с голографический принцип. Это означает, что гравитация не фундаментальное взаимодействие, но возникающее явление.[7]

Другие силы

После дискуссии, начатой ​​Верлинде, были предложены энтропийные объяснения других фундаментальных сил:[27] в том числе Закон Кулона,[28][29][30] то электрослабый и сильные силы.[31] Тот же подход приводился для объяснения темная материя, темная энергия и Пионерский эффект.[32]

Ссылки на адаптивное поведение

Утверждалось, что причинные энтропийные силы приводят к спонтанному появлению использования инструментов и социального сотрудничества.[33][34][35] Причинные энтропийные силы по определению максимизируют производство энтропии между настоящим и будущим временным горизонтом, а не просто жадно максимизируют мгновенное производство энтропии, как типичные энтропийные силы.

Формальная одновременная связь математической структуры обнаруженных законов природы, интеллекта и энтропийных мер сложности была ранее отмечена в 2000 г. Андреем Соклаковым.[36][37] в контексте бритва Оккама принцип.

Смотрите также

использованная литература

  1. ^ Мюллер, Инго (2007). История термодинамики: доктрина энергии и энтропии. Springer Science & Business Media. п. 115. ISBN  978-3-540-46227-9.
  2. ^ Роос, Нико (2014). «Энтропийные силы в броуновском движении». Американский журнал физики. 82 (12): 1161–1166. arXiv:1310.4139. Bibcode:2014AmJPh..82.1161R. Дои:10.1119/1.4894381. ISSN  0002-9505. S2CID  119286756.
  3. ^ Бреслер С. Э., Ерусалимский Б. Л., Физика и химия макромолекул, Наука, М.-Л., 1965, с.42.
  4. ^ Виленчик Лев З., «Квинтэссенция: термодинамический подход к явлениям природы», Nova Science Publishers, Нью-Йорк, (2016), стр.25 ISBN  978-1536122435 ISBN  1536122432
  5. ^ Виленчик Лев З., «Энтропийная сущность природы», Международный журнал теоретической физики Нелинейная оптика и теория групп, Том 17, номер 4, стр. 295-307, (2017)
  6. ^ а б Нойман Р.М. (1980). «Энтропийный подход к броуновскому движению». Американский журнал физики. 48 (5): 354–357. arXiv:1310.4139. Bibcode:1980AmJPh..48..354N. Дои:10.1119/1.12095.
  7. ^ а б c Верлинде, Эрик (2011). «О происхождении гравитации и законах Ньютона». Журнал физики высоких энергий. 2011 (4): 29. arXiv:1001.0785. Bibcode:2011JHEP ... 04..029V. Дои:10.1007 / JHEP04 (2011) 029. S2CID  3597565.
  8. ^ Мах, Эрнст (1909). Механика.
  9. ^ Хокинг, Стивен; Эллис, Джордж Фрэнсис Рейнер (1973). Крупномасштабная структура пространства-времени. Издательство Кембриджского университета. ISBN  978-0521200165.
  10. ^ Виленчик, Лев З. (2018). «Сосуществование ближнего и дальнего действия при взаимодействиях материальных объектов и фазовых переходах». Журнал естественных наук и устойчивых технологий (JNSST). 12 (2): 131-139.
  11. ^ а б c Тейлор; Табачник (2013). «Энтропийные силы - соединение механики и термодинамики в точно решаемой модели». Европейский журнал физики. 34 (3): 729–736. Bibcode:2013EJPh ... 34..729T. Дои:10.1088/0143-0807/34/3/729.
  12. ^ а б Нойман Р.М. (1977). «Энтропия одиночной гауссовой макромолекулы в невзаимодействующем растворителе». Журнал химической физики. 66 (2): 870–871. Bibcode:1977ЖЧФ..66..870Н. Дои:10.1063/1.433923.
  13. ^ Smith, SB; Finzi, L; Бустаманте, С. (1992). «Прямые механические измерения эластичности отдельных молекул ДНК с помощью магнитных шариков». Наука. 258 (5085): 1122–6. Bibcode:1992Научный ... 258.1122С. Дои:10.1126 / science.1439819. PMID  1439819.
  14. ^ Waters, Джеймс Т .; Ким, Гарольд Д. (18 апреля 2016 г.). «Распределение силы в полужесткой петле». Физический обзор E. 93 (4): 043315. arXiv:1602.08197. Bibcode:2016PhRvE..93d3315W. Дои:10.1103 / PhysRevE.93.043315. ЧВК  5295765. PMID  27176436.
  15. ^ Энциклопедия наук о жизни Статья о гидрофобном эффекте; См. Рисунок 4: «Архивная копия» (PDF). Архивировано из оригинал (PDF) на 2014-12-22. Получено 2012-04-10.CS1 maint: заархивированная копия как заголовок (ссылка на сайт)
  16. ^ «Основная биохимия».
  17. ^ а б Пейс К.Н., Ширли Б.А., Макнатт М., Гадживала К. (1 января 1996 г.). «Силы, способствующие конформационной стабильности белков». FASEB J. 10 (1): 75–83. Дои:10.1096 / fasebj.10.1.8566551. PMID  8566551.
  18. ^ Compiani M, Capriotti E (декабрь 2013 г.). «Вычислительные и теоретические методы фолдинга белков» (PDF). Биохимия. 52 (48): 8601–24. Дои:10.1021 / bi4001529. PMID  24187909. Архивировано из оригинал (PDF) на 2015-09-04.
  19. ^ Каллавей, Дэвид Дж. Э. (1994). «Организация, индуцированная растворителем: физическая модель сворачивания миоглобина». Белки: структура, функции и биоинформатика. 20 (1): 124–138. arXiv:cond-mat / 9406071. Bibcode:1994 второй мат..6071C. Дои:10.1002 / prot.340200203. PMID  7846023. S2CID  317080.
  20. ^ Роуз Дж. Д., Флеминг П. Дж., Банавар Дж. Р., Маритан А. (2006). «Основанная на позвоночнике теория сворачивания белка». Proc. Natl. Акад. Sci. СОЕДИНЕННЫЕ ШТАТЫ АМЕРИКИ. 103 (45): 16623–33. Bibcode:2006PNAS..10316623R. Дои:10.1073 / pnas.0606843103. ЧВК  1636505. PMID  17075053.
  21. ^ Джеральд Карп (2009). Клеточная и молекулярная биология: концепции и эксперименты. Джон Уайли и сыновья. С. 128–. ISBN  978-0-470-48337-4.
  22. ^ а б c d ван Андерс, Грег; Клоца, Дафна; Ахмед, Н. Халид; Энгель, Майкл; Глотцер, Шэрон К. (2014). «Понимание энтропии формы через локальную плотную упаковку». Proc Natl Acad Sci USA. 111 (45): E4812 – E4821. arXiv:1309.1187. Bibcode:2014ПНАС..111Е4812В. Дои:10.1073 / pnas.1418159111. ЧВК  4234574. PMID  25344532.
  23. ^ а б Damasceno, Pablo F .; Энгель, Майкл; Глотцер, Шэрон К. (2012). «Прогнозирующая самосборка многогранников в сложные структуры». Наука. 337 (6093): 453–457. arXiv:1202.2177. Bibcode:2012Наука ... 337..453D. Дои:10.1126 / наука.1220869. PMID  22837525. S2CID  7177740.
  24. ^ ван Андерс, Грег; Ахмед, Н. Халид; Смит, Росс; Энгель, Майкл; Глотцер, Шэрон К. (2014). «Энтропийно пятнистые частицы: инженерная валентность через энтропию формы». САУ Нано. 8 (1): 931–940. arXiv:1304.7545. Дои:10.1021 / nn4057353. PMID  24359081. S2CID  9669569.
  25. ^ Damasceno, Pablo F .; Энгель, Майкл; Глотцер, Шэрон К. (2012). «Кристаллические сборки и плотнейшие упаковки семейства усеченных тетраэдров и роль направленных энтропийных сил». САУ Нано. 6 (1): 609–14. arXiv:1109.1323. Дои:10.1021 / nn204012y. PMID  22098586. S2CID  12785227.
  26. ^ ван Андерс, Грег; Ахмед, Н. Халид; Смит, Росс; Энгель, Майкл; Глотцер, Шэрон К. (2014). «Энтропийно пятнистые частицы: инженерная валентность через энтропию формы». САУ Нано. 8 (1): 931–940. arXiv:1304.7545. Дои:10.1021 / nn4057353. PMID  24359081. S2CID  9669569.
  27. ^ а б Виссер, Мэтт (2011). «Консервативные энтропийные силы». Журнал физики высоких энергий. 2011 (10): 140. arXiv:1108.5240. Bibcode:2011JHEP ... 10..140В. Дои:10.1007 / JHEP10 (2011) 140. S2CID  119097091.
  28. ^ Ван, Башня (2010). «Кулоновская сила как энтропийная сила». Физический обзор D. 81 (10): 104045. arXiv:1001.4965. Bibcode:2010PhRvD..81j4045W. Дои:10.1103 / PhysRevD.81.104045. S2CID  118545831.
  29. ^ Di Caprio, D .; Badiali, J. P .; Головко, М. (2008). «Простой теоретико-полевой подход кулоновских систем. Энтропийные эффекты». arXiv:0809.4631. Цитировать журнал требует | журнал = (Помогите)
  30. ^ Hendi, S. H .; Шейхи, А. (2012). «Энтропийные поправки к закону Кулона». Международный журнал теоретической физики. 51 (4): 1125–1136. arXiv:1009.5561. Bibcode:2012IJTP ... 51.1125H. Дои:10.1007 / s10773-011-0989-2. S2CID  118849945.
  31. ^ Фройнд, Питер Г. О. (2010). «Эмерджентные калибровочные поля». arXiv:1008.4147. Цитировать журнал требует | журнал = (Помогите)
  32. ^ Чанг, Чжэ; Ли, Мин-Хуа; Ли, Синь (2011). «Объединение темной материи и темной энергии в модифицированной модели энтропийной силы». Сообщения по теоретической физике. 56 (1): 184–192. arXiv:1009.1506. Bibcode:2011CoTPh..56..184C. Дои:10.1088/0253-6102/56/1/32. S2CID  119312663.
  33. ^ Висснер-Гросс, А.; Фриер, C.E. (2013). «Причинно-энтропийные силы» (PDF). Письма с физическими проверками. 110 (16): 168702. Bibcode:2013PhRvL.110p8702W. Дои:10.1103 / PhysRevLett.110.168702. PMID  23679649.
  34. ^ Канесса, Э. (2013). "Комментарий к Phys. Rev. Lett. 110, 168702 (2013): Причинно-энтропийные силы". arXiv:1308.4375. Цитировать журнал требует | журнал = (Помогите)
  35. ^ Каппен, Х. Дж. (2013). «Комментарий: Причинные энтропийные силы». arXiv:1312.4185. Цитировать журнал требует | журнал = (Помогите)
  36. ^ Соклаков, Андрей Н. (2000). «Бритва Оккама как формальная основа физической теории». arXiv:math-ph / 0009007. Bibcode:2000мат.ч ... 9007S. Цитировать журнал требует | журнал = (Помогите){{цитировать журнал | url =
  37. ^ Соклаков, Андрей Н. (2000). «Анализ сложности алгоритмически простых строк». arXiv:cs / 0009001. Bibcode:2000cs ........ 9001S. Цитировать журнал требует | журнал = (Помогите)