Икосаэдрические 120-ячеечные соты Order-5 - Order-5 icosahedral 120-cell honeycomb

Икосаэдрические 120-ячеечные соты Order-5
(Нет изображения)
ТипГиперболические обычные соты
Символ Шлефли{3,5,5/2,5}
Диаграмма КокстераCDel node 1.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel rat.pngCDel 2x.pngCDel node.pngCDel 5.pngCDel node.png
4 лицаОрто сплошной 007-однородный полихорон 35p-t0.png {3,5,5/2}
КлеткиИкосаэдр.png {3,5}
ЛицаПравильный многоугольник 3 annotated.svg {3}
Фигура лицаПравильный многоугольник 5 annotated.svg {5}
Край фигураМалый звездчатый додекаэдр.png {5/2,5}
Фигура вершиныОрто сплошной 008-однородный полихорон 5п5-t0.png {5,5/2,5}
ДвойнойОтличные соты на 120 ячеек
Группа КокстераЧАС4, [5,3,3,3]
ХарактеристикиОбычный

в геометрия из гиперболическое 4-пространство, то 120-ячеечные икосаэдрические соты порядка 5 один из четырех обычный звезда-соты. С Символ Шлефли {3,5,5 / 2,5}, в нем пять икосаэдрические 120 ячеек вокруг каждого лица. это двойной к отличные соты на 120 ячеек.

Его можно построить, заменив большой додекаэдр ячеек большой 120-ячеечной соты с их икосаэдр выпуклые корпуса, заменяя тем самым отличный 120-ячеечный с икосаэдрические 120 ячеек. Таким образом, это аналог четырехмерного икосаэдрический 120-элементный. Она имеет плотность 10.

Смотрите также

Рекомендации

  • Coxeter, Правильные многогранники, 3-й. изд., Dover Publications, 1973. ISBN  0-486-61480-8. (Таблицы I и II: Правильные многогранники и соты, стр. 294–296)
  • Coxeter, Красота геометрии: двенадцать эссе, Dover Publications, 1999 г. ISBN  0-486-40919-8 (Глава 10: Обычные соты в гиперболическом пространстве, Сводные таблицы II, III, IV, V, стр. 212-213)