Усеченные 8-симплексные соты - Omnitruncated 8-simplex honeycomb

Усеченные 8-симплексные соты
(Нет изображения)
ТипРавномерные соты
СемьяПростые усеченные соты
Символ Шлефли{3[9]}
Диаграммы Кокстера – ДынкинаCDel node 1.pngCDel split1.pngУзлы CDel 11.pngCDel 3ab.pngУзлы CDel 11.pngCDel 3ab.pngУзлы CDel 11.pngCDel 3ab.pngCDel branch 11.png
7-гранные типыт01234567{3,3,3,3,3,3,3}
Фигура вершиныУсеченные 8-симплексные соты verf.png
Irr. 8-симплекс
Симметрия×18, [9[3[9]]]
Характеристикивершинно-транзитивный

В восьмимерный Евклидова геометрия, то усеченные 8-симплексные соты заполняет пространство мозаика (или же соты ). Он полностью состоит из омниусеченный 8-симплексный грани.

Грани всего усеченные простые соты называются пермутаэдры и может быть размещен в п + 1 пространство с целыми координатами, перестановками целых чисел (0,1, .., n).

А*
8
решетка

А*
8
решетка (также называемая A9
8
) - объединение девяти A8 решеток и имеет расположение вершин двойных сот на усеченные 8-симплексные соты, и, следовательно, Ячейка Вороного этой решетки является омниусеченный 8-симплексный

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.pngCDel node.pngCDel split1.pngУзлы CDel 10lur.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.pngCDel node.pngCDel split1.pngУзлы CDel 01lr.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngУзлы CDel 10lr.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngУзлы CDel 01lr.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngУзлы CDel 10lr.pngCDel 3ab.pngCDel branch.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngУзлы CDel 01lr.pngCDel 3ab.pngCDel branch.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch 10l.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch 01l.png = двойной CDel node 1.pngCDel split1.pngУзлы CDel 11.pngCDel 3ab.pngУзлы CDel 11.pngCDel 3ab.pngУзлы CDel 11.pngCDel 3ab.pngCDel branch 11.png.

Связанные многогранники и соты

Эти соты - одна из 45 уникальных однородных сот[1] построенный Группа Коксетера. Симметрию можно умножить на симметрию кольца Диаграммы Кокстера:

Смотрите также

Обычные и однородные соты в 8-м пространстве:

Примечания

  1. ^ * Вайсштейн, Эрик В. "Ожерелье". MathWorld., OEIS последовательность A000029 46-1 случаев, пропуская один с нулевыми отметками

Рекомендации

  • Норман Джонсон Равномерные многогранники, Рукопись (1991)
  • Калейдоскопы: Избранные произведения Х.С.М. Coxeter, под редакцией Ф. Артура Шерка, Питера Макмаллена, Энтони С. Томпсона, Асии Ивика Вайса, публикации Wiley-Interscience, 1995, ISBN  978-0-471-01003-6 [1]
    • (Документ 22) Х.С.М. Кокстер, Регулярные и полурегулярные многогранники I, [Math. Zeit. 46 (1940) 380-407, MR 2,10] (1.9 Однородные заполнители пространств)
    • (Документ 24) Х.С.М. Кокстер, Правильные и полурегулярные многогранники III, [Math. Zeit. 200 (1988) 3-45]
Фундаментальный выпуклый обычный и однородные соты в размерах 2-9
КосмосСемья / /
E2Равномерная черепица{3[3]}δ333Шестиугольный
E3Равномерно выпуклые соты{3[4]}δ444
E4Равномерные 4-соты{3[5]}δ55524-ячеечные соты
E5Равномерные 5-соты{3[6]}δ666
E6Равномерные 6-соты{3[7]}δ777222
E7Равномерные 7-соты{3[8]}δ888133331
E8Равномерные 8-соты{3[9]}δ999152251521
E9Равномерные 9-соты{3[10]}δ101010
Eп-1Униформа (п-1)-соты{3[n]}δппп1k22k1k21