PSMB6 - PSMB6

PSMB6
Protein PSMB6 PDB 1iru.png
Доступные конструкции
PDBПоиск ортолога: PDBe RCSB
Идентификаторы
ПсевдонимыPSMB6, ДЕЛЬТА, LMPY, субъединица бета 6 протеасомы, Y, субъединица 20S протеасомы бета 6
Внешние идентификаторыOMIM: 600307 MGI: 104880 ГомолоГен: 2092 Генные карты: PSMB6
Расположение гена (человек)
Хромосома 17 (человек)
Chr.Хромосома 17 (человек)[1]
Хромосома 17 (человек)
Genomic location for PSMB6
Genomic location for PSMB6
Группа17p13.2Начинать4,796,144 бп[1]
Конец4,798,502 бп[1]
Экспрессия РНК шаблон
PBB GE PSMB6 208827 at fs.png
Дополнительные данные эталонного выражения
Ортологи
РазновидностьЧеловекМышь
Entrez
Ансамбль
UniProt
RefSeq (мРНК)

NM_002798
NM_001270481

NM_008946

RefSeq (белок)

NP_001257410
NP_002789

NP_032972

Расположение (UCSC)Chr 17: 4.8 - 4.8 МбChr 11: 70,53 - 70,53 Мб
PubMed поиск[3][4]
Викиданные
Просмотр / редактирование человекаПросмотр / редактирование мыши

Субъединица протеасомы бета типа 6 также известный как 20S протеасома субъединица бета-1 (на основе систематической номенклатуры) является белок что у людей кодируется PSMB6 ген.[5][6][7]

Этот белок является одной из 17 основных субъединиц (альфа-субъединицы 1-7, конститутивные бета-субъединицы 1-7 и индуцибельные субъединицы, включая beta1i, beta2i, beta5i ) что способствует полной сборке 20S протеасома сложный. В частности, субъединица бета-6 протеасомы вместе с другими субъединицами бета собираются в два гептамерных кольца, а затем в протеолитическую камеру для деградации субстрата. Этот белок обладает «каспазоподобной» активностью и способен расщеплять кислотные остатки пептида.[8] Эукариотический протеасома признанные разлагаемые белки, в том числе поврежденные белки для контроля качества белков или ключевые регуляторные белковые компоненты для динамических биологических процессов. Важной функцией модифицированной протеасомы, иммунопротеасомы, является процессинг пептидов MHC класса I.

Структура

Ген

Ген человека содержит 6 экзоны и расположен в полосе хромосомы 17p13.

Протеин

Субъединица протеасомы белка бета-типа 6 человека имеет размер 22 кДа и состоит из 205 аминокислот. Рассчитанная теоретическая pI этого белка составляет 4,91.

Субъединица бета-1 протеасомы 20S (систематическая номенклатура) первоначально экспрессируется как предшественник с 239 аминокислотами. Фрагмент из 34 аминокислот в пептиде N-концевой необходимо для правильного сворачивание белка и последующая сложная сборка. На конечной стадии сборки комплекса N-концевой фрагмент субъединицы бета1 отщепляется, образуя зрелую субъединицу бета1 комплекса 20S.[9]

Комплексная сборка

В протеасома представляет собой мультикаталитический протеиназный комплекс с высокоупорядоченной структурой ядра 20S. Эта бочкообразная структура ядра состоит из 4 уложенных в осевом направлении колец из 28 неидентичных субъединиц: каждое из двух концевых колец образовано 7 альфа-субъединицами, а два центральных кольца образованы 7 бета-субъединицами. Три бета-субъединицы (beta1, бета2, beta5 ) каждый содержит протеолитический активный центр и имеет различные предпочтения в отношении субстрата. Протеасомы в высокой концентрации распределяются по эукариотическим клеткам и расщепляют пептиды в АТФ / убиквитин-зависимом процессе нелизосомного пути.[10][11]

Функция

Ген PSMB6 кодирует члена семейства протеасом B-типа, также известного как семейство T1B, которое представляет собой 20S коровую бета-субъединицу в протеасоме. Эта каталитическая субъединица отсутствует в иммунопротеасоме и заменена каталитически индуцируемой субъединицей бета1i (субъединица бета 9 протеасомы).[7]

Протеасомы - ключевой компонент Убиквитин-протеасомная система (UPS)[12] и соответствующий контроль качества клеточного белка (PQC). Нарушение сборки протеасомного комплекса приводит к снижению протеолитической активности и накоплению поврежденных или неправильно свернутых белков. Такое накопление белка стало фенотипической характеристикой нейродегенеративных заболеваний,[13][14] сердечно-сосудистые заболевания,[15][16][17] и системные реакции на повреждение ДНК.[18]

Функция этого белка поддерживается его третичной структурой и его взаимодействием с ассоциирующими партнерами. Как одна из 28 субъединиц 20S протеасомы, субъединица протеасомы бета-типа 2 вносит вклад в формирование протеолитической среды для деградации субстрата. Свидетельства кристаллических структур изолированного 20S протеасомного комплекса демонстрируют, что два кольца бета-субъединиц образуют протеолитическую камеру и поддерживают все свои активные центры протеолиза внутри камеры.[11] Одновременно кольца альфа-субъединиц образуют вход для субстратов, попадающих в протеолитическую камеру. В инактивированном 20S протеасомном комплексе ворота во внутреннюю протеолитическую камеру охраняются N-концевыми хвостами специфической альфа-субъединицы. Этот уникальный дизайн структуры предотвращает случайное столкновение между протеолитическими активными центрами и белковым субстратом, что делает деградацию белка хорошо регулируемым процессом.[19][20] 20S протеасомный комплекс сам по себе обычно функционально неактивен. Протеолитическая способность 20S ядерной частицы (CP) может быть активирована, когда CP связывается с одной или двумя регуляторными частицами (RP) на одной или обеих сторонах альфа-колец. Эти регуляторные частицы включают протеасомные комплексы 19S, протеасомные комплексы 11S и т. Д. После ассоциации CP-RP подтверждение определенных альфа-субъединиц изменится и, следовательно, вызовет открытие входных ворот субстрата. Помимо RP, протеасомы 20S также могут быть эффективно активированы другими мягкими химическими обработками, такими как воздействие низких уровней додецилсульфата натрия (SDS) или NP-14.[20][21]

Клиническое значение

Протеасома и ее субъединицы имеют клиническое значение по крайней мере по двум причинам: (1) нарушенная комплексная сборка или дисфункциональная протеасома может быть связана с патофизиологией конкретных заболеваний, и (2) они могут использоваться в качестве мишеней для лекарств для терапевтических целей. вмешательства. Совсем недавно были предприняты дополнительные усилия по рассмотрению протеасомы для разработки новых диагностических маркеров и стратегий. Улучшенное и всестороннее понимание патофизиологии протеасомы должно привести к важным клиническим применениям в будущем.

Протеасомы образуют ключевой компонент для Убиквитин-протеасомная система (UPS) [12] и соответствующий контроль качества клеточного белка (PQC). Протеин убиквитинирование и последующие протеолиз и деградация протеасомами являются важными механизмами в регуляции клеточный цикл, рост клеток и дифференцировка, транскрипция генов, сигнальная трансдукция и апоптоз.[22] Впоследствии нарушение сборки и функции протеасомного комплекса ведет к снижению протеолитической активности и накоплению поврежденных или неправильно свернутых белков. Такое накопление белка может способствовать патогенезу и фенотипическим характеристикам нейродегенеративных заболеваний,[13][14] сердечно-сосудистые заболевания,[15][16][17] воспалительные реакции и аутоиммунные заболевания,[23] и системные реакции на повреждение ДНК, приводящие к злокачественные новообразования.[18]

Несколько экспериментальных и клинических исследований показали, что аберрации и нарушение регуляции UPS вносят вклад в патогенез нескольких нейродегенеративных и миодегенеративных заболеваний, включая Болезнь Альцгеймера,[24] болезнь Паркинсона[25] и Болезнь Пика,[26] Боковой амиотрофический склероз (ALS ),[26] болезнь Хантингтона,[25] Болезнь Крейтцфельдта-Якоба,[27] болезни мотонейронов, полиглутаминовые (PolyQ) заболевания, Мышечные дистрофии[28] и несколько редких форм нейродегенеративных заболеваний, связанных с слабоумие.[29] В рамках Убиквитин-протеасомная система (UPS), протеасома поддерживает гомеостаз сердечного белка и, таким образом, играет важную роль в сердечной Ишемический травма, повреждение,[30] гипертрофия желудочков[31] и Сердечная недостаточность.[32] Кроме того, накапливаются доказательства того, что UPS играет важную роль в злокачественной трансформации. Протеолиз UPS играет важную роль в ответах раковых клеток на стимулирующие сигналы, которые имеют решающее значение для развития рака. Соответственно, экспрессия гена за счет деградации факторы транскрипции, Такие как p53, с-июн, c-Fos, NF-κB, c-Myc, HIF-1α, MATα2, STAT3, стерол-регулируемые связывающие элементы белки и рецепторы андрогенов Все они контролируются ИБП и, таким образом, участвуют в развитии различных злокачественных новообразований.[33] Кроме того, UPS регулирует деградацию продуктов гена-супрессора опухолей, таких как аденоматозный полипоз кишечной палочки (APC ) при колоректальном раке, ретинобластома (Rb). и опухолевый супрессор фон Хиппеля-Линдау (ВХЛ), а также ряд протоонкогены (Раф, Мой с, Myb, Rel, Src, Мос, Abl ). ИБП также участвует в регуляции воспалительных реакций. Эта активность обычно объясняется ролью протеасом в активации NF-κB, который дополнительно регулирует экспрессию провоспалительных цитокины Такие как TNF-α, ИЛ-β, Ил-8, молекулы адгезии (ICAM-1, VCAM-1, Р-селектин ) и простагландины и оксид азота (НЕТ).[23] Кроме того, UPS также играет роль в воспалительных реакциях в качестве регуляторов пролиферации лейкоцитов, в основном за счет протеолиза циклинов и деградации CDK ингибиторы.[34] Наконец, аутоиммунное заболевание пациенты с SLE, Синдром Шегрена и ревматоидный артрит (RA) преимущественно демонстрируют циркулирующие протеасомы, которые можно использовать в качестве клинических биомаркеров.[35]

Как упоминалось выше, субъединица протеасомы бета-типа 6, также известная как субъединица 20S протеасомы бета-1, представляет собой белок, который кодируется геном PSMB6 у человека. Клинически важная роль белка PSMB6 в основном обнаружена при злокачественных новообразованиях. Например, было обнаружено, что фармакологическая лекарственная терапия периплоцином при лечении ревматоидного артрита ингибирует рак легких как в экспериментальных моделях in vivo, так и in vitro. Соответственно, изменяется белковый профиль человека. рак легких Сотовые линии A549 в ответ на лечение периплоцином были исследованы с использованием протеомических подходов (2-DE в сочетании с МС / МС ) в сочетании с Вестерн-блоттинг анализ для проверки измененных белков.[36] С помощью иммуноблот анализ с последующим НИТЬ биоинформатическим анализом было выявлено, что периплоцин может ингибировать рост рака легких посредством подавляющих белков, таких как ATP5A1, EIF5A, ALDH1 и PSMB6. Таким образом, субъединица протеасомы бета-типа 6 (PSMB6), по-видимому, играет важную роль в молекулярных механизмах, лежащих в основе противораковых эффектов периплоцина на клетки рака легких.[36] Протеомное исследование, анализирующее дифференциально экспрессируемые белки UPS на крысиной модели хронической гипоксии. легочная гипертония который характеризуется устойчивым повышением сопротивления легочных сосудов, что приводит к ремоделированию сосудов, выявил значительную связь с белком PSMB6.[37] Хроническая гипоксия усиливает активность протеасом и пролиферацию легочной артерии. гладкая мышца клетки, что может быть связано с повышенной экспрессией PSMB6 и впоследствии с усилением функциональных каталитических сайтов протеасомы. Таким образом, протеасома может играть важную роль при хронической гипоксической легочной гипертензии.[38]

Рекомендации

  1. ^ а б c ГРЧ38: Ансамбль выпуск 89: ENSG00000142507 - Ансамбль, Май 2017
  2. ^ а б c GRCm38: выпуск Ensembl 89: ENSMUSG00000018286 - Ансамбль, Май 2017
  3. ^ "Справочник человека по PubMed:". Национальный центр биотехнологической информации, Национальная медицинская библиотека США.
  4. ^ "Ссылка на Mouse PubMed:". Национальный центр биотехнологической информации, Национальная медицинская библиотека США.
  5. ^ Акияма К., Йокота К., Кагава С., Симбара Н., Тамура Т., Акиока Х., Нотванг Х. Г., Нода С., Танака К., Итихара А. (август 1994 г.). «Клонирование кДНК и подавление гамма-интерферона протеасомных субъединиц X и Y». Наука. 265 (5176): 1231–4. Bibcode:1994Научный ... 265.1231A. Дои:10.1126 / science.8066462. PMID  8066462.
  6. ^ ДеМартино Г.Н., Орт К., Маккалоу М.Л., Ли Л.В., Манн Т.З., Мумау С.Р., Доусон, Пенсильвания, Слотер, Калифорния (август 1991 г.). «Первичные структуры четырех субъединиц высокомолекулярной протеиназы человека, макропаина (протеасомы), являются различными, но гомологичными». Biochimica et Biophysica Acta (BBA) - Структура белка и молекулярная энзимология. 1079 (1): 29–38. Дои:10.1016 / 0167-4838 (91) 90020-Z. PMID  1888762.
  7. ^ а б «Ген Entrez: субъединица протеасомы PSMB6 (просома, макропаин), бета-тип, 6».
  8. ^ Coux O, Tanaka K, Goldberg AL (ноябрь 1996 г.). «Структура и функции протеасом 20S и 26S». Ежегодный обзор биохимии. 65: 801–47. Дои:10.1146 / annurev.bi.65.070196.004101. PMID  8811196.
  9. ^ Ян И., Фрю К., Ан К., Петерсон П.А. (ноябрь 1995 г.). «Сборка протеасомных комплексов in vivo, влияние на процессинг антигена». Журнал биологической химии. 270 (46): 27687–94. Дои:10.1074 / jbc.270.46.27687. PMID  7499235.
  10. ^ Coux O, Tanaka K, Goldberg AL (1996). «Структура и функции протеасом 20S и 26S». Ежегодный обзор биохимии. 65: 801–47. Дои:10.1146 / annurev.bi.65.070196.004101. PMID  8811196.
  11. ^ а б Томко Р.Дж., Хохштрассер М (2013). «Молекулярная архитектура и сборка протеасомы эукариот». Ежегодный обзор биохимии. 82: 415–45. Дои:10.1146 / annurev-biochem-060410-150257. ЧВК  3827779. PMID  23495936.
  12. ^ а б Клейгер Г., мэр Т. (июнь 2014 г.). «Опасное путешествие: экскурсия по убиквитин-протеасомной системе». Тенденции в клеточной биологии. 24 (6): 352–9. Дои:10.1016 / j.tcb.2013.12.003. ЧВК  4037451. PMID  24457024.
  13. ^ а б Сулистио Ю.А., Хиз К. (январь 2015 г.). «Убиквитин-протеасомная система и дерегуляция молекулярных шаперонов при болезни Альцгеймера». Молекулярная нейробиология. 53 (2): 905–31. Дои:10.1007 / s12035-014-9063-4. PMID  25561438. S2CID  14103185.
  14. ^ а б Ортега З, Лукас Дж.Дж. (2014). «Участие убиквитин-протеасомной системы в болезни Хантингтона». Границы молекулярной неврологии. 7: 77. Дои:10.3389 / fnmol.2014.00077. ЧВК  4179678. PMID  25324717.
  15. ^ а б Сандри М., Роббинс Дж. (Июнь 2014 г.). «Протеотоксичность: недооцененная патология при сердечных заболеваниях». Журнал молекулярной и клеточной кардиологии. 71: 3–10. Дои:10.1016 / j.yjmcc.2013.12.015. ЧВК  4011959. PMID  24380730.
  16. ^ а б Дрюс О., Тэгтмайер Х (декабрь 2014 г.). «Нацеливание на убиквитин-протеасомную систему при сердечных заболеваниях: основа для новых терапевтических стратегий». Антиоксиданты и редокс-сигналы. 21 (17): 2322–43. Дои:10.1089 / ars.2013.5823. ЧВК  4241867. PMID  25133688.
  17. ^ а б Ван З.В., Хилл Д.А. (февраль 2015 г.). «Контроль качества протеина и метаболизм: двунаправленный контроль в сердце». Клеточный метаболизм. 21 (2): 215–26. Дои:10.1016 / j.cmet.2015.01.016. ЧВК  4317573. PMID  25651176.
  18. ^ а б Ермолаева М.А., Даховник А., Шумахер Б. (янв 2015). «Механизмы контроля качества в ответах на клеточные и системные повреждения ДНК». Обзоры исследований старения. 23 (Pt A): 3–11. Дои:10.1016 / j.arr.2014.12.009. ЧВК  4886828. PMID  25560147.
  19. ^ Groll M, Ditzel L, Löwe J, Stock D, Bochtler M, Bartunik HD, Huber R (апрель 1997 г.). «Структура протеасомы 20S из дрожжей при разрешении 2,4 А». Природа. 386 (6624): 463–71. Bibcode:1997Натура.386..463G. Дои:10.1038 / 386463a0. PMID  9087403. S2CID  4261663.
  20. ^ а б Гролль М., Байорек М., Келер А., Мородер Л., Рубин Д.М., Хубер Р., Гликман М.Х., Финли Д. (ноябрь 2000 г.). «Закрытый канал в частицу ядра протеасомы». Структурная биология природы. 7 (11): 1062–7. Дои:10.1038/80992. PMID  11062564. S2CID  27481109.
  21. ^ Zong C, Gomes AV, Drews O, Li X, Young GW, Berhane B, Qiao X, French SW, Bardag-Gorce F, Ping P (август 2006 г.). «Регуляция сердечных 20S протеасом мышей: роль ассоциирующих партнеров». Циркуляционные исследования. 99 (4): 372–80. Дои:10.1161 / 01.RES.0000237389.40000.02. PMID  16857963.
  22. ^ Гольдберг А.Л., Штейн Р., Адамс Дж. (Август 1995 г.). «Новое понимание функции протеасом: от архебактерий до разработки лекарств». Химия и биология. 2 (8): 503–8. Дои:10.1016/1074-5521(95)90182-5. PMID  9383453.
  23. ^ а б Карин М., Дельхас М. (февраль 2000 г.). «Киназа I каппа B (IKK) и NF-каппа B: ключевые элементы провоспалительной передачи сигналов». Семинары по иммунологии. 12 (1): 85–98. Дои:10.1006 / smim.2000.0210. PMID  10723801.
  24. ^ Checler F, da Costa CA, Ancolio K, Chevallier N, Lopez-Perez E., Marambaud P (июль 2000 г.). «Роль протеасомы в болезни Альцгеймера». Biochimica et Biophysica Acta (BBA) - Молекулярная основа болезни. 1502 (1): 133–8. Дои:10.1016 / s0925-4439 (00) 00039-9. PMID  10899438.
  25. ^ а б Чунг К.К., Доусон В.Л., Доусон TM (ноябрь 2001 г.). «Роль убиквитин-протеасомного пути в болезни Паркинсона и других нейродегенеративных расстройствах». Тенденции в неврологии. 24 (11 Прил.): S7–14. Дои:10.1016 / s0166-2236 (00) 01998-6. PMID  11881748. S2CID  2211658.
  26. ^ а б Икеда К., Акияма Х., Араи Т., Уэно Х., Цучия К., Косака К. (июль 2002 г.). «Морфометрическая переоценка системы двигательных нейронов болезни Пика и бокового амиотрофического склероза с деменцией». Acta Neuropathologica. 104 (1): 21–8. Дои:10.1007 / s00401-001-0513-5. PMID  12070660. S2CID  22396490.
  27. ^ Манака Х, Като Т, Курита К., Катагири Т, Шикама Й, Кудзираи К., Каванами Т, Судзуки И, Нихей К., Сасаки Х (май 1992 г.). «Заметное увеличение убиквитина в спинномозговой жидкости при болезни Крейтцфельдта – Якоба». Письма о неврологии. 139 (1): 47–9. Дои:10.1016 / 0304-3940 (92) 90854-з. PMID  1328965. S2CID  28190967.
  28. ^ Мэтьюз К.Д., Мур С.А. (январь 2003 г.). «Конечностно-поясная мышечная дистрофия». Текущие отчеты по неврологии и неврологии. 3 (1): 78–85. Дои:10.1007 / s11910-003-0042-9. PMID  12507416. S2CID  5780576.
  29. ^ Майер Р.Дж. (март 2003 г.). «От нейродегенерации к нейрогомеостазу: роль убиквитина». Новости и перспективы наркотиков. 16 (2): 103–8. Дои:10.1358 / dnp.2003.16.2.829327. PMID  12792671.
  30. ^ Кализа Дж., Пауэлл С.Р. (февраль 2013 г.). «Убиквитиновая протеасомная система и ишемия миокарда». Американский журнал физиологии. Сердце и физиология кровообращения. 304 (3): H337–49. Дои:10.1152 / ajpheart.00604.2012. ЧВК  3774499. PMID  23220331.
  31. ^ Предмор Дж. М., Ван П., Дэвис Ф., Бартолон С., Вестфол М. В., Дайк Д. Б., Пагани Ф., Пауэлл С. Р., Дэй С.М. (март 2010 г.). «Дисфункция убиквитиновых протеасом при гипертрофических и дилатационных кардиомиопатиях». Тираж. 121 (8): 997–1004. Дои:10.1161 / CIRCULATIONAHA.109.904557. ЧВК  2857348. PMID  20159828.
  32. ^ Пауэлл SR (июль 2006 г.). «Убиквитин-протеасомная система в физиологии и патологии сердца». Американский журнал физиологии. Сердце и физиология кровообращения. 291 (1): H1 – H19. Дои:10.1152 / ajpheart.00062.2006. PMID  16501026.
  33. ^ Адамс Дж (апрель 2003 г.). «Возможности ингибирования протеасомы при лечении рака». Открытие наркотиков сегодня. 8 (7): 307–15. Дои:10.1016 / с 1359-6446 (03) 02647-3. PMID  12654543.
  34. ^ Бен-Нерия Y (январь 2002 г.). «Регуляторные функции убиквитинирования в иммунной системе». Иммунология природы. 3 (1): 20–6. Дои:10.1038 / ni0102-20. PMID  11753406. S2CID  26973319.
  35. ^ Egerer K, Kuckelkorn U, Rudolph PE, Rückert JC, Dörner T., Burmester GR, Kloetzel PM, Feist E (октябрь 2002 г.). «Циркулирующие протеасомы являются маркерами повреждения клеток и иммунологической активности при аутоиммунных заболеваниях». Журнал ревматологии. 29 (10): 2045–52. PMID  12375310.
  36. ^ а б Лу З, Сон Кью, Ян Дж, Чжао Х, Чжан Икс, Ян П, Кан Дж (2014). «Сравнительный протеомный анализ противоракового механизма лечения перилоцином в клетках рака легких». Клеточная физиология и биохимия. 33 (3): 859–68. Дои:10.1159/000358658. PMID  24685647.
  37. ^ Ван Дж, Сюй Л., Юнь Х, Ян К., Ляо Д., Тянь Л., Цзян Х., Лу В. (2013). «Протеомный анализ показывает, что субъединица бета 6 протеасомы участвует в индуцированном гипоксией ремоделировании легочных сосудов у крыс». PLOS ONE. 8 (7): e67942. Bibcode:2013PLoSO ... 867942W. Дои:10.1371 / journal.pone.0067942. ЧВК  3700908. PMID  23844134.
  38. ^ Ван Дж, Сюй Л., Юнь Х, Ян К., Ляо Д., Тянь Л., Цзян Х., Лу В. (2013). «Протеомный анализ показывает, что субъединица бета 6 протеасомы участвует в индуцированном гипоксией ремоделировании легочных сосудов у крыс». PLOS ONE. 8 (7): e67942. Bibcode:2013PLoSO ... 867942W. Дои:10.1371 / journal.pone.0067942. ЧВК  3700908. PMID  23844134.

дальнейшее чтение