Тессерактические соты с усеченной структурой - Bitruncated tesseractic honeycomb

Тессерактические соты с усеченной структурой
(Нет изображения)
ТипРавномерные 4-соты
Символ Шлефлит1,2{4,3,3,4} или 2т {4,3,3,4}
т1,2{4,31,1} или 2т {4,31,1}
т2,3{4,31,1}
q2{4,3,3,3,4}
Диаграмма Кокстера-Дынкина

CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.png
Узлы CDel 11.pngCDel split2.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel split1.pngУзлы CDel 10lu.png = CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 4a4b.pngУзлы CDel h1h1.png

4-гранный типОбрезанный тессеракт Schlegel полутвердый бит-усеченный 16-cell.png
Усеченная 16-ячеечная Шлегель полутвердый усеченный 16-cell.png
Тип ячейкиОктаэдр Octahedron.png
Усеченный тетраэдр Усеченный тетраэдр.png
Усеченный октаэдр Усеченный октаэдр.png
Тип лица{3}, {4}, {6}
Фигура вершиныBitruncated tesseractic honeycomb verf.png
Квадратно-пирамидальная пирамида
Группа Коксетера = [4,3,3,4]
= [4,31,1]
= [31,1,1,1]
Двойной
Характеристикивершинно-транзитивный

В четырехмерный Евклидова геометрия, то усеченные тессерактические соты равномерное заполнение пространства мозаика (или же соты ) в 4-мерном евклидовом пространстве. Он построен битовое усечение из тессерактические соты. Его также называют кантик четверть тессерактические соты из его q2{4,3,3,4} строительство.

Другие имена

  • Обрезанный тессерактический тетракомб (батитит)

Связанные соты

[4,3,3,4], CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png, Группа Коксетера генерирует 31 перестановку однородных мозаик, 21 с четкой симметрией и 20 с отличной геометрией. В расширенный Тессератические соты (также известные как стерилизованные тессерактические соты) геометрически идентичны тессерактическим сотам. Три симметричные соты относятся к семейству [3,4,3,3]. Два чередования (13) и (17), а также четверть тессерактика (2) повторяются в других семействах.

[4,3,31,1], CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png, Группа Коксетера генерирует 31 перестановку однородных мозаик, 23 с четкой симметрией и 4 с отличной геометрией. Есть две чередующиеся формы: чередования (19) и (24) имеют ту же геометрию, что и 16-ячеечные соты и курносый 24-элементный сотовый соответственно.

Есть десять однородных сот построенный Группа Коксетера, все повторяется в других семействах по расширенной симметрии, что видно по графической симметрии колец в Диаграммы Кокстера – Дынкина. 10-й построен как чередование. Как подгруппы в Обозначение Кокстера: [3,4,(3,3)*] (индекс 24), [3,3,4,3*] (индекс 6), [1+,4,3,3,4,1+] (индекс 4), [31,1,3,4,1+] (индекс 2) все изоморфны [31,1,1,1].

Десять перестановок перечислены с их высшим расширенным отношением симметрии:

Смотрите также

Регулярные и однородные соты в 4-м пространстве:

Примечания

Рекомендации

  • Калейдоскопы: избранные произведения Х. С. М. Коксетер, под редакцией Ф. Артура Шерка, Питера Макмаллена, Энтони С. Томпсона, Асии Ивика Вайса, публикации Wiley-Interscience, 1995, ISBN  978-0-471-01003-6 [1]
    • (Документ 24) Х.С.М. Кокстер, Правильные и полурегулярные многогранники III, [Math. Zeit. 200 (1988) 3-45] См. Стр. 318. [2]
  • Георгий Ольшевский, Однородные паноплоидные тетракомбы, Рукопись (2006) (Полный список из 11 выпуклых однородных мозаик, 28 выпуклых однородных сот и 143 выпуклых однородных тетракомб)
  • Клитцинг, Ричард. "4D Евклидовы мозаики # 4D". x3x3x * b3o * b3o, x3x3x * b3o4o, o3x3o * b3x4o, o4x3x3o4o - батитит - O92
  • Конвей Дж. Х., Слоан Нью-Джерси (1998). Сферические упаковки, решетки и группы (3-е изд.). ISBN  0-387-98585-9.
Фундаментальный выпуклый обычный и однородные соты в размерах 2-9
КосмосСемья / /
E2Равномерная черепица{3[3]}δ333Шестиугольный
E3Равномерно выпуклые соты{3[4]}δ444
E4Равномерные 4-соты{3[5]}δ55524-ячеечные соты
E5Равномерные 5-соты{3[6]}δ666
E6Равномерные 6-соты{3[7]}δ777222
E7Равномерные 7-соты{3[8]}δ888133331
E8Равномерные 8-соты{3[9]}δ999152251521
E9Равномерные 9-соты{3[10]}δ101010
Eп-1Униформа (п-1)-соты{3[n]}δппп1k22k1k21