В расчетах интеграл секущей функции могут быть оценены с использованием различных методов, и существует несколько способов выражения первообразной, все из которых можно показать как эквивалентные с помощью тригонометрических тождеств,
Эта формула полезна для вычисления различных тригонометрических интегралов. В частности, его можно использовать для оценки интеграл секущей функции в кубе, который, несмотря на кажущуюся особенность, довольно часто встречается в приложениях.[1]
Доказательство эквивалентности различных первообразных
Тригонометрические формы
Второй из них следует из первого умножения верхней и нижней части внутренней дроби на . Это дает в знаменателе, и результат следует путем перенесения множителя 1/2 в логарифм как квадратный корень. Оставив пока константу интегрирования,
Третья форма следует заменой к и расширение с помощью идентичности за . Его также можно получить напрямую, выполнив следующие замены:
Традиционное решение для Проекция Меркатора ординату можно писать без знаков модуля, так как широта лежит между и ,
Гиперболические формы
Позволять
Следовательно,
История
Интеграл от секущей функции был одной из «нерешенных открытых проблем середины семнадцатого века», решенной в 1668 г. Джеймс Грегори.[2] Он применил свой результат к задаче о навигационных таблицах.[1] В 1599 г. Эдвард Райт оценил интеграл к численные методы - что сегодня мы бы назвали Суммы Римана.[3] Он хотел решение для целей картография - специально для построения точного Проекция Меркатора.[2] В 1640-х годах Генри Бонд, учитель навигации, геодезии и других математических дисциплин, сравнил численно вычисленную таблицу Райта значений интеграла секущий с таблицей логарифмов касательной функции, и, следовательно, предположил, что[2]
Эта гипотеза получила широкую известность, и в 1665 г. Исаак Ньютон знал об этом.[4][5]
Оценки
Стандартной заменой (подход Грегори)
Стандартный метод вычисления секущего интеграла, представленный в различных источниках, включает в себя умножение числителя и знаменателя на а затем подставив в полученное выражение следующее: и .[6][7] Эта замена может быть получена путем сложения производных секущей и касательной, у которых секущая является общим множителем.[8]
Начиная с
добавление их дает
Таким образом, производная от суммы равна сумме, умноженной на . Это позволяет умножать к в числителе и знаменателе и произведя следующие замены: и .
Интеграл вычисляется следующим образом:
как заявлено. Эту формулу открыл Джеймс Грегори.[1]
Частичными дробями и заменой (подход Барроу)
Хотя Григорий доказал гипотезу в 1668 г. Геометрические упражнениядоказательство было представлено в форме, которая делает его почти невозможным для понимания современного читателя; Исаак Барроу, в его Геометрические лекции 1670 г.,[9] дал первое «вразумительное» доказательство, хотя даже оно было «сформулировано в геометрической идиоме того времени».[2] Доказательство результата Барроу было самым ранним использованием частичные фракции в интеграции.[2] Доказательство Барроу, адаптированное к современным обозначениям, начиналось следующим образом:
по формулам двойного угла. Что касается интеграла от секущей функции,
как прежде.
Нестандартный
Интеграл также может быть получен с помощью несколько нестандартной версии подстановки Вейерштрасса, которая проще в случае этого конкретного интеграла, опубликованного в 2013 г.[11] как следует:
Гудермановский и ламбертианский
Интеграл от секущей функции определяет функцию Ламберта, которая является обратной функцией Функция Гудермана:
Это встречается в теории картографических проекций: Проекция Меркатора точки с долготой θ и широта φ может быть написано[12] в качестве:
^Эдвард Райт, Определенные ошибки в навигации, возникающие либо из-за обычного ошибочного построения или совмещения морской карты, компаса, штаба Кросс и таблиц склонения Солнца, а также фиксированного Старреса, обнаруженного и исправленного, Валентин Симмс, Лондон, 1599 г.
^Х. В. Тернбулл, редактор, Переписка Исаака Ньютона, Cambridge University Press, 1959–1960, том 1, страницы 13–16 и том 2, страницы 99–100.
^Д. Т. Уайтсайд, редактор, Математические статьи Исаака Ньютона, Cambridge University Press, 1967, том 1, страницы 466–467 и 473–475.